Dividing Complex Numbers
Division is the same as multiplying by the multiplicative inverse. For a complex number a+bi, the inverse is 1/(a+bi), but it is helpful to transform this ito rectangular form:
1 a-bi a-bi a b ---- = ------------ = --------- = --------- - --------- i a+bi (a+bi)(a-bi) a^2 + b^2 a^2 + b^2 a^2 + b^2
So, if we have problem (a+bi)/(c+di), we actually have a+bi multiplied by the inverse of c+di. We can transform this to rectangular form also:
c d
(a+bi) ( --------- - --------- i )
c^2 + d^2 c^2 + d^2
ac ad bc bd
= --------- - --------- i + --------- i + ---------
c^2 + d^2 c^2 + d^2 c^2 + d^2 c^2 + d^2
ac + bd bc - ad
= --------- + --------- i
c^2 + d^2 c^2 + d^2
So,
a+bi ac + bd bc - ad ---- = --------- + --------- i c+di c^2 + d^2 c^2 + d^2
If you happen to be working in polar form instead, the calculation is much simpler, as you are simply dividing with the magnitudes and subtracting with the angles.
ae^(ic) a i(c-d) ------- = - e be^(id) b
Response: 20 (Success), text/gemini
| Original URL | gemini://gem.librehacker.com/gemlog/tech/20210808-0.gmi |
|---|---|
| Status Code | 20 (Success) |
| Content-Type | text/gemini; charset=utf-8 |