# package math - math - godocs.io ``` import "math" ``` Package math provides basic constants and mathematical functions. This package does not guarantee bit-identical results across architectures. ## Constants ``` const ( E = 2.71828182845904523536028747135266249775724709369995957496696763 // https://oeis.org/A001113 Pi = 3.14159265358979323846264338327950288419716939937510582097494459 // https://oeis.org/A000796 Phi = 1.61803398874989484820458683436563811772030917980576286213544862 // https://oeis.org/A001622 Sqrt2 = 1.41421356237309504880168872420969807856967187537694807317667974 // https://oeis.org/A002193 SqrtE = 1.64872127070012814684865078781416357165377610071014801157507931 // https://oeis.org/A019774 SqrtPi = 1.77245385090551602729816748334114518279754945612238712821380779 // https://oeis.org/A002161 SqrtPhi = 1.27201964951406896425242246173749149171560804184009624861664038 // https://oeis.org/A139339 Ln2 = 0.693147180559945309417232121458176568075500134360255254120680009 // https://oeis.org/A002162 Log2E = 1 / Ln2 Ln10 = 2.30258509299404568401799145468436420760110148862877297603332790 // https://oeis.org/A002392 Log10E = 1 / Ln10 ) ``` Mathematical constants. ``` const ( MaxFloat32 = 0x1p127 * (1 + (1 - 0x1p-23)) // 3.40282346638528859811704183484516925440e+38 SmallestNonzeroFloat32 = 0x1p-126 * 0x1p-23 // 1.401298464324817070923729583289916131280e-45 MaxFloat64 = 0x1p1023 * (1 + (1 - 0x1p-52)) // 1.79769313486231570814527423731704356798070e+308 SmallestNonzeroFloat64 = 0x1p-1022 * 0x1p-52 // 4.9406564584124654417656879286822137236505980e-324 ) ``` Floating-point limit values. Max is the largest finite value representable by the type. SmallestNonzero is the smallest positive, non-zero value representable by the type. ``` const ( MaxInt = 1<<(intSize-1) - 1 // MaxInt32 or MaxInt64 depending on intSize. MinInt = -1 << (intSize - 1) // MinInt32 or MinInt64 depending on intSize. MaxInt8 = 1<<7 - 1 // 127 MinInt8 = -1 << 7 // -128 MaxInt16 = 1<<15 - 1 // 32767 MinInt16 = -1 << 15 // -32768 MaxInt32 = 1<<31 - 1 // 2147483647 MinInt32 = -1 << 31 // -2147483648 MaxInt64 = 1<<63 - 1 // 9223372036854775807 MinInt64 = -1 << 63 // -9223372036854775808 MaxUint = 1< 1 ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Acos(1)) } ``` Output: ``` 0.00 ``` ### func Acosh ``` func Acosh(x float64) float64 ``` Acosh returns the inverse hyperbolic cosine of x. Special cases are: ``` Acosh(+Inf) = +Inf Acosh(x) = NaN if x < 1 Acosh(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Acosh(1)) } ``` Output: ``` 0.00 ``` ### func Asin ``` func Asin(x float64) float64 ``` Asin returns the arcsine, in radians, of x. Special cases are: ``` Asin(±0) = ±0 Asin(x) = NaN if x < -1 or x > 1 ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Asin(0)) } ``` Output: ``` 0.00 ``` ### func Asinh ``` func Asinh(x float64) float64 ``` Asinh returns the inverse hyperbolic sine of x. Special cases are: ``` Asinh(±0) = ±0 Asinh(±Inf) = ±Inf Asinh(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Asinh(0)) } ``` Output: ``` 0.00 ``` ### func Atan ``` func Atan(x float64) float64 ``` Atan returns the arctangent, in radians, of x. Special cases are: ``` Atan(±0) = ±0 Atan(±Inf) = ±Pi/2 ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Atan(0)) } ``` Output: ``` 0.00 ``` ### func Atan2 ``` func Atan2(y, x float64) float64 ``` Atan2 returns the arc tangent of y/x, using the signs of the two to determine the quadrant of the return value. Special cases are (in order): ``` Atan2(y, NaN) = NaN Atan2(NaN, x) = NaN Atan2(+0, x>=0) = +0 Atan2(-0, x>=0) = -0 Atan2(+0, x<=-0) = +Pi Atan2(-0, x<=-0) = -Pi Atan2(y>0, 0) = +Pi/2 Atan2(y<0, 0) = -Pi/2 Atan2(+Inf, +Inf) = +Pi/4 Atan2(-Inf, +Inf) = -Pi/4 Atan2(+Inf, -Inf) = 3Pi/4 Atan2(-Inf, -Inf) = -3Pi/4 Atan2(y, +Inf) = 0 Atan2(y>0, -Inf) = +Pi Atan2(y<0, -Inf) = -Pi Atan2(+Inf, x) = +Pi/2 Atan2(-Inf, x) = -Pi/2 ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Atan2(0, 0)) } ``` Output: ``` 0.00 ``` ### func Atanh ``` func Atanh(x float64) float64 ``` Atanh returns the inverse hyperbolic tangent of x. Special cases are: ``` Atanh(1) = +Inf Atanh(±0) = ±0 Atanh(-1) = -Inf Atanh(x) = NaN if x < -1 or x > 1 Atanh(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Atanh(0)) } ``` Output: ``` 0.00 ``` ### func Cbrt ``` func Cbrt(x float64) float64 ``` Cbrt returns the cube root of x. Special cases are: ``` Cbrt(±0) = ±0 Cbrt(±Inf) = ±Inf Cbrt(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Cbrt(8)) fmt.Printf("%.2f\n", math.Cbrt(27)) } ``` Output: ``` 2.00 3.00 ``` ### func Ceil ``` func Ceil(x float64) float64 ``` Ceil returns the least integer value greater than or equal to x. Special cases are: ``` Ceil(±0) = ±0 Ceil(±Inf) = ±Inf Ceil(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { c := math.Ceil(1.49) fmt.Printf("%.1f", c) } ``` Output: ``` 2.0 ``` ### func Copysign ``` func Copysign(f, sign float64) float64 ``` Copysign returns a value with the magnitude of f and the sign of sign. ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Copysign(3.2, -1)) } ``` Output: ``` -3.20 ``` ### func Cos ``` func Cos(x float64) float64 ``` Cos returns the cosine of the radian argument x. Special cases are: ``` Cos(±Inf) = NaN Cos(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Cos(math.Pi/2)) } ``` Output: ``` 0.00 ``` ### func Cosh ``` func Cosh(x float64) float64 ``` Cosh returns the hyperbolic cosine of x. Special cases are: ``` Cosh(±0) = 1 Cosh(±Inf) = +Inf Cosh(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Cosh(0)) } ``` Output: ``` 1.00 ``` ### func Dim ``` func Dim(x, y float64) float64 ``` Dim returns the maximum of x-y or 0. Special cases are: ``` Dim(+Inf, +Inf) = NaN Dim(-Inf, -Inf) = NaN Dim(x, NaN) = Dim(NaN, x) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Dim(4, -2)) fmt.Printf("%.2f\n", math.Dim(-4, 2)) } ``` Output: ``` 6.00 0.00 ``` ### func Erf ``` func Erf(x float64) float64 ``` Erf returns the error function of x. Special cases are: ``` Erf(+Inf) = 1 Erf(-Inf) = -1 Erf(NaN) = NaN ``` ### func Erfc ``` func Erfc(x float64) float64 ``` Erfc returns the complementary error function of x. Special cases are: ``` Erfc(+Inf) = 0 Erfc(-Inf) = 2 Erfc(NaN) = NaN ``` ### func Erfcinv ``` func Erfcinv(x float64) float64 ``` Erfcinv returns the inverse of Erfc(x). Special cases are: ``` Erfcinv(0) = +Inf Erfcinv(2) = -Inf Erfcinv(x) = NaN if x < 0 or x > 2 Erfcinv(NaN) = NaN ``` ### func Erfinv ``` func Erfinv(x float64) float64 ``` Erfinv returns the inverse error function of x. Special cases are: ``` Erfinv(1) = +Inf Erfinv(-1) = -Inf Erfinv(x) = NaN if x < -1 or x > 1 Erfinv(NaN) = NaN ``` ### func Exp ``` func Exp(x float64) float64 ``` Exp returns e**x, the base-e exponential of x. Special cases are: ``` Exp(+Inf) = +Inf Exp(NaN) = NaN ``` Very large values overflow to 0 or +Inf. Very small values underflow to 1. ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Exp(1)) fmt.Printf("%.2f\n", math.Exp(2)) fmt.Printf("%.2f\n", math.Exp(-1)) } ``` Output: ``` 2.72 7.39 0.37 ``` ### func Exp2 ``` func Exp2(x float64) float64 ``` Exp2 returns 2**x, the base-2 exponential of x. Special cases are the same as Exp. ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Exp2(1)) fmt.Printf("%.2f\n", math.Exp2(-3)) } ``` Output: ``` 2.00 0.12 ``` ### func Expm1 ``` func Expm1(x float64) float64 ``` Expm1 returns e**x - 1, the base-e exponential of x minus 1. It is more accurate than Exp(x) - 1 when x is near zero. Special cases are: ``` Expm1(+Inf) = +Inf Expm1(-Inf) = -1 Expm1(NaN) = NaN ``` Very large values overflow to -1 or +Inf. ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.6f\n", math.Expm1(0.01)) fmt.Printf("%.6f\n", math.Expm1(-1)) } ``` Output: ``` 0.010050 -0.632121 ``` ### func FMA ``` func FMA(x, y, z float64) float64 ``` FMA returns x * y + z, computed with only one rounding. (That is, FMA returns the fused multiply-add of x, y, and z.) ### func Float32bits ``` func Float32bits(f float32) uint32 ``` Float32bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position. Float32bits(Float32frombits(x)) == x. ### func Float32frombits ``` func Float32frombits(b uint32) float32 ``` Float32frombits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. Float32frombits(Float32bits(x)) == x. ### func Float64bits ``` func Float64bits(f float64) uint64 ``` Float64bits returns the IEEE 754 binary representation of f, with the sign bit of f and the result in the same bit position, and Float64bits(Float64frombits(x)) == x. ### func Float64frombits ``` func Float64frombits(b uint64) float64 ``` Float64frombits returns the floating-point number corresponding to the IEEE 754 binary representation b, with the sign bit of b and the result in the same bit position. Float64frombits(Float64bits(x)) == x. ### func Floor ``` func Floor(x float64) float64 ``` Floor returns the greatest integer value less than or equal to x. Special cases are: ``` Floor(±0) = ±0 Floor(±Inf) = ±Inf Floor(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { c := math.Floor(1.51) fmt.Printf("%.1f", c) } ``` Output: ``` 1.0 ``` ### func Frexp ``` func Frexp(f float64) (frac float64, exp int) ``` Frexp breaks f into a normalized fraction and an integral power of two. It returns frac and exp satisfying f == frac × 2**exp, with the absolute value of frac in the interval [½, 1). Special cases are: ``` Frexp(±0) = ±0, 0 Frexp(±Inf) = ±Inf, 0 Frexp(NaN) = NaN, 0 ``` ### func Gamma ``` func Gamma(x float64) float64 ``` Gamma returns the Gamma function of x. Special cases are: ``` Gamma(+Inf) = +Inf Gamma(+0) = +Inf Gamma(-0) = -Inf Gamma(x) = NaN for integer x < 0 Gamma(-Inf) = NaN Gamma(NaN) = NaN ``` ### func Hypot ``` func Hypot(p, q float64) float64 ``` Hypot returns Sqrt(p*p + q*q), taking care to avoid unnecessary overflow and underflow. Special cases are: ``` Hypot(±Inf, q) = +Inf Hypot(p, ±Inf) = +Inf Hypot(NaN, q) = NaN Hypot(p, NaN) = NaN ``` ### func Ilogb ``` func Ilogb(x float64) int ``` Ilogb returns the binary exponent of x as an integer. Special cases are: ``` Ilogb(±Inf) = MaxInt32 Ilogb(0) = MinInt32 Ilogb(NaN) = MaxInt32 ``` ### func Inf ``` func Inf(sign int) float64 ``` Inf returns positive infinity if sign >= 0, negative infinity if sign < 0. ### func IsInf ``` func IsInf(f float64, sign int) bool ``` IsInf reports whether f is an infinity, according to sign. If sign > 0, IsInf reports whether f is positive infinity. If sign < 0, IsInf reports whether f is negative infinity. If sign == 0, IsInf reports whether f is either infinity. ### func IsNaN ``` func IsNaN(f float64) (is bool) ``` IsNaN reports whether f is an IEEE 754 “not-a-number” value. ### func J0 ``` func J0(x float64) float64 ``` J0 returns the order-zero Bessel function of the first kind. Special cases are: ``` J0(±Inf) = 0 J0(0) = 1 J0(NaN) = NaN ``` ### func J1 ``` func J1(x float64) float64 ``` J1 returns the order-one Bessel function of the first kind. Special cases are: ``` J1(±Inf) = 0 J1(NaN) = NaN ``` ### func Jn ``` func Jn(n int, x float64) float64 ``` Jn returns the order-n Bessel function of the first kind. Special cases are: ``` Jn(n, ±Inf) = 0 Jn(n, NaN) = NaN ``` ### func Ldexp ``` func Ldexp(frac float64, exp int) float64 ``` Ldexp is the inverse of Frexp. It returns frac × 2**exp. Special cases are: ``` Ldexp(±0, exp) = ±0 Ldexp(±Inf, exp) = ±Inf Ldexp(NaN, exp) = NaN ``` ### func Lgamma ``` func Lgamma(x float64) (lgamma float64, sign int) ``` Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). Special cases are: ``` Lgamma(+Inf) = +Inf Lgamma(0) = +Inf Lgamma(-integer) = +Inf Lgamma(-Inf) = -Inf Lgamma(NaN) = NaN ``` ### func Log ``` func Log(x float64) float64 ``` Log returns the natural logarithm of x. Special cases are: ``` Log(+Inf) = +Inf Log(0) = -Inf Log(x < 0) = NaN Log(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { x := math.Log(1) fmt.Printf("%.1f\n", x) y := math.Log(2.7183) fmt.Printf("%.1f\n", y) } ``` Output: ``` 0.0 1.0 ``` ### func Log10 ``` func Log10(x float64) float64 ``` Log10 returns the decimal logarithm of x. The special cases are the same as for Log. ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.1f", math.Log10(100)) } ``` Output: ``` 2.0 ``` ### func Log1p ``` func Log1p(x float64) float64 ``` Log1p returns the natural logarithm of 1 plus its argument x. It is more accurate than Log(1 + x) when x is near zero. Special cases are: ``` Log1p(+Inf) = +Inf Log1p(±0) = ±0 Log1p(-1) = -Inf Log1p(x < -1) = NaN Log1p(NaN) = NaN ``` ### func Log2 ``` func Log2(x float64) float64 ``` Log2 returns the binary logarithm of x. The special cases are the same as for Log. ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.1f", math.Log2(256)) } ``` Output: ``` 8.0 ``` ### func Logb ``` func Logb(x float64) float64 ``` Logb returns the binary exponent of x. Special cases are: ``` Logb(±Inf) = +Inf Logb(0) = -Inf Logb(NaN) = NaN ``` ### func Max ``` func Max(x, y float64) float64 ``` Max returns the larger of x or y. Special cases are: ``` Max(x, +Inf) = Max(+Inf, x) = +Inf Max(x, NaN) = Max(NaN, x) = NaN Max(+0, ±0) = Max(±0, +0) = +0 Max(-0, -0) = -0 ``` Note that this differs from the built-in function max when called with NaN and +Inf. ### func Min ``` func Min(x, y float64) float64 ``` Min returns the smaller of x or y. Special cases are: ``` Min(x, -Inf) = Min(-Inf, x) = -Inf Min(x, NaN) = Min(NaN, x) = NaN Min(-0, ±0) = Min(±0, -0) = -0 ``` Note that this differs from the built-in function min when called with NaN and -Inf. ### func Mod ``` func Mod(x, y float64) float64 ``` Mod returns the floating-point remainder of x/y. The magnitude of the result is less than y and its sign agrees with that of x. Special cases are: ``` Mod(±Inf, y) = NaN Mod(NaN, y) = NaN Mod(x, 0) = NaN Mod(x, ±Inf) = x Mod(x, NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { c := math.Mod(7, 4) fmt.Printf("%.1f", c) } ``` Output: ``` 3.0 ``` ### func Modf ``` func Modf(f float64) (int float64, frac float64) ``` Modf returns integer and fractional floating-point numbers that sum to f. Both values have the same sign as f. Special cases are: ``` Modf(±Inf) = ±Inf, NaN Modf(NaN) = NaN, NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { int, frac := math.Modf(3.14) fmt.Printf("%.2f, %.2f\n", int, frac) int, frac = math.Modf(-2.71) fmt.Printf("%.2f, %.2f\n", int, frac) } ``` Output: ``` 3.00, 0.14 -2.00, -0.71 ``` ### func NaN ``` func NaN() float64 ``` NaN returns an IEEE 754 “not-a-number” value. ### func Nextafter ``` func Nextafter(x, y float64) (r float64) ``` Nextafter returns the next representable float64 value after x towards y. Special cases are: ``` Nextafter(x, x) = x Nextafter(NaN, y) = NaN Nextafter(x, NaN) = NaN ``` ### func Nextafter32 ``` func Nextafter32(x, y float32) (r float32) ``` Nextafter32 returns the next representable float32 value after x towards y. Special cases are: ``` Nextafter32(x, x) = x Nextafter32(NaN, y) = NaN Nextafter32(x, NaN) = NaN ``` ### func Pow ``` func Pow(x, y float64) float64 ``` Pow returns x**y, the base-x exponential of y. Special cases are (in order): ``` Pow(x, ±0) = 1 for any x Pow(1, y) = 1 for any y Pow(x, 1) = x for any x Pow(NaN, y) = NaN Pow(x, NaN) = NaN Pow(±0, y) = ±Inf for y an odd integer < 0 Pow(±0, -Inf) = +Inf Pow(±0, +Inf) = +0 Pow(±0, y) = +Inf for finite y < 0 and not an odd integer Pow(±0, y) = ±0 for y an odd integer > 0 Pow(±0, y) = +0 for finite y > 0 and not an odd integer Pow(-1, ±Inf) = 1 Pow(x, +Inf) = +Inf for |x| > 1 Pow(x, -Inf) = +0 for |x| > 1 Pow(x, +Inf) = +0 for |x| < 1 Pow(x, -Inf) = +Inf for |x| < 1 Pow(+Inf, y) = +Inf for y > 0 Pow(+Inf, y) = +0 for y < 0 Pow(-Inf, y) = Pow(-0, -y) Pow(x, y) = NaN for finite x < 0 and finite non-integer y ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { c := math.Pow(2, 3) fmt.Printf("%.1f", c) } ``` Output: ``` 8.0 ``` ### func Pow10 ``` func Pow10(n int) float64 ``` Pow10 returns 10**n, the base-10 exponential of n. Special cases are: ``` Pow10(n) = 0 for n < -323 Pow10(n) = +Inf for n > 308 ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { c := math.Pow10(2) fmt.Printf("%.1f", c) } ``` Output: ``` 100.0 ``` ### func Remainder ``` func Remainder(x, y float64) float64 ``` Remainder returns the IEEE 754 floating-point remainder of x/y. Special cases are: ``` Remainder(±Inf, y) = NaN Remainder(NaN, y) = NaN Remainder(x, 0) = NaN Remainder(x, ±Inf) = x Remainder(x, NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.1f", math.Remainder(100, 30)) } ``` Output: ``` 10.0 ``` ### func Round ``` func Round(x float64) float64 ``` Round returns the nearest integer, rounding half away from zero. Special cases are: ``` Round(±0) = ±0 Round(±Inf) = ±Inf Round(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { p := math.Round(10.5) fmt.Printf("%.1f\n", p) n := math.Round(-10.5) fmt.Printf("%.1f\n", n) } ``` Output: ``` 11.0 -11.0 ``` ### func RoundToEven ``` func RoundToEven(x float64) float64 ``` RoundToEven returns the nearest integer, rounding ties to even. Special cases are: ``` RoundToEven(±0) = ±0 RoundToEven(±Inf) = ±Inf RoundToEven(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { u := math.RoundToEven(11.5) fmt.Printf("%.1f\n", u) d := math.RoundToEven(12.5) fmt.Printf("%.1f\n", d) } ``` Output: ``` 12.0 12.0 ``` ### func Signbit ``` func Signbit(x float64) bool ``` Signbit reports whether x is negative or negative zero. ### func Sin ``` func Sin(x float64) float64 ``` Sin returns the sine of the radian argument x. Special cases are: ``` Sin(±0) = ±0 Sin(±Inf) = NaN Sin(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Sin(math.Pi)) } ``` Output: ``` 0.00 ``` ### func Sincos ``` func Sincos(x float64) (sin, cos float64) ``` Sincos returns Sin(x), Cos(x). Special cases are: ``` Sincos(±0) = ±0, 1 Sincos(±Inf) = NaN, NaN Sincos(NaN) = NaN, NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { sin, cos := math.Sincos(0) fmt.Printf("%.2f, %.2f", sin, cos) } ``` Output: ``` 0.00, 1.00 ``` ### func Sinh ``` func Sinh(x float64) float64 ``` Sinh returns the hyperbolic sine of x. Special cases are: ``` Sinh(±0) = ±0 Sinh(±Inf) = ±Inf Sinh(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Sinh(0)) } ``` Output: ``` 0.00 ``` ### func Sqrt ``` func Sqrt(x float64) float64 ``` Sqrt returns the square root of x. Special cases are: ``` Sqrt(+Inf) = +Inf Sqrt(±0) = ±0 Sqrt(x < 0) = NaN Sqrt(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { const ( a = 3 b = 4 ) c := math.Sqrt(a*a + b*b) fmt.Printf("%.1f", c) } ``` Output: ``` 5.0 ``` ### func Tan ``` func Tan(x float64) float64 ``` Tan returns the tangent of the radian argument x. Special cases are: ``` Tan(±0) = ±0 Tan(±Inf) = NaN Tan(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Tan(0)) } ``` Output: ``` 0.00 ``` ### func Tanh ``` func Tanh(x float64) float64 ``` Tanh returns the hyperbolic tangent of x. Special cases are: ``` Tanh(±0) = ±0 Tanh(±Inf) = ±1 Tanh(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f", math.Tanh(0)) } ``` Output: ``` 0.00 ``` ### func Trunc ``` func Trunc(x float64) float64 ``` Trunc returns the integer value of x. Special cases are: ``` Trunc(±0) = ±0 Trunc(±Inf) = ±Inf Trunc(NaN) = NaN ``` ### Example Code: ``` package main import ( "fmt" "math" ) func main() { fmt.Printf("%.2f\n", math.Trunc(math.Pi)) fmt.Printf("%.2f\n", math.Trunc(-1.2345)) } ``` Output: ``` 3.00 -1.00 ``` ### func Y0 ``` func Y0(x float64) float64 ``` Y0 returns the order-zero Bessel function of the second kind. Special cases are: ``` Y0(+Inf) = 0 Y0(0) = -Inf Y0(x < 0) = NaN Y0(NaN) = NaN ``` ### func Y1 ``` func Y1(x float64) float64 ``` Y1 returns the order-one Bessel function of the second kind. Special cases are: ``` Y1(+Inf) = 0 Y1(0) = -Inf Y1(x < 0) = NaN Y1(NaN) = NaN ``` ### func Yn ``` func Yn(n int, x float64) float64 ``` Yn returns the order-n Bessel function of the second kind. Special cases are: ``` Yn(n, +Inf) = 0 Yn(n ≥ 0, 0) = -Inf Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even Yn(n, x < 0) = NaN Yn(n, NaN) = NaN ``` ## Directories => /math/big math/big Package big implements arbitrary-precision arithmetic (big numbers). => /math/bits math/bits Package bits implements bit counting and manipulation functions for the predeclared unsigned integer types. => /math/cmplx math/cmplx Package cmplx provides basic constants and mathematical functions for complex numbers. => /math/rand math/rand Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work. => /math/rand/v2 math/rand/v2 Package rand implements pseudo-random number generators suitable for tasks such as simulation, but it should not be used for security-sensitive work. ## Details => ?view=versions Version: v1.22.5 (latest) * Published: Jun 27, 2024 => ?view=platforms Platform: linux/amd64 => ?view=imports Imports: 3 packages * Last checked: 10 seconds ago => /-/refresh?import_path=math&platform=linux/amd64 Refresh now => / Back to home => /-/search Search