|
|
instiki_ncatlab.org.atom.xml - sfeed_tests - sfeed tests and RSS and Atom files |
|
|
 |
git clone git://git.codemadness.org/sfeed_tests (git://git.codemadness.org) |
|
|
 |
Log |
|
|
 |
Files |
|
|
 |
Refs |
|
|
 |
README |
|
|
 |
LICENSE |
|
|
|
--- |
|
|
|
instiki_ncatlab.org.atom.xml (502820B) |
|
|
|
--- |
|
|
|
1 <feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en"> |
|
|
|
2 <title>nLab</title> |
|
|
|
3 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/HomePage"/> |
|
|
|
4 <link rel="self" href="https://ncatlab.org/nlab/atom_with_content"/> |
|
|
|
5 <updated>2021-07-02T09:22:44Z</updated> |
|
|
|
6 <id>tag:ncatlab.org,2008-11-28:nLab</id> |
|
|
|
7 <subtitle>An Instiki Wiki</subtitle> |
|
|
|
8 <generator uri="http://golem.ph.utexas.edu/instiki/show/HomePage" version="0.19.7(MML+)">Instiki</generator> |
|
|
|
9 <entry> |
|
|
|
10 <title type="html">Urs Frauenfelder</title> |
|
|
|
11 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Urs+Frauenfelder"/> |
|
|
|
12 <updated>2021-07-02T09:22:44Z</updated> |
|
|
|
13 <published>2021-07-02T09:22:46Z</published> |
|
|
|
14 <id>tag:ncatlab.org,2021-07-02:nLab,Urs+Frauenfelder</id> |
|
|
|
15 <author> |
|
|
|
16 <name>Urs Schreiber</name> |
|
|
|
17 </author> |
|
|
|
18 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Urs+Frauenfelder"> |
|
|
|
19 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
20 <ul> |
|
|
|
21 <li> |
|
|
|
22 <p><a href='https://www.uni-augsburg.de/en/fakultaet/mntf/math/prof/geom/frauenfelder/'>Institute page</a></p> |
|
|
|
23 </li> |
|
|
|
24 |
|
|
|
25 <li> |
|
|
|
26 <p><a href='https://www.genealogy.math.ndsu.nodak.edu/id.php?id=120240'>MathematicsGenealogy page</a></p> |
|
|
|
27 </li> |
|
|
|
28 </ul> |
|
|
|
29 |
|
|
|
30 <h2 id='selected_writings'>Selected writings</h2> |
|
|
|
31 |
|
|
|
32 <p>On <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a>:</p> |
|
|
|
33 |
|
|
|
34 <ul> |
|
|
|
35 <li><a class='existingWikiWord' href='/nlab/show/Urs+Frauenfelder'>Urs Frauenfelder</a>, <em>Dihedral homology and the moon</em>, J. Fixed Point Theory Appl. <strong>14</strong> (2013) 55–69 (<a href='https://arxiv.org/abs/1204.4549'>arXiv:1204.4549</a>, <a href='https://doi.org/10.1007/s11784-013-0146-z'>doi:10.1007/s11784-013-0146-z</a>)</li> |
|
|
|
36 </ul> |
|
|
|
37 |
|
|
|
38 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p> </div> |
|
|
|
39 </content> |
|
|
|
40 </entry> |
|
|
|
41 <entry> |
|
|
|
42 <title type="html">cyclic loop space</title> |
|
|
|
43 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/cyclic+loop+space"/> |
|
|
|
44 <updated>2021-07-02T09:20:18Z</updated> |
|
|
|
45 <published>2017-02-14T09:56:17Z</published> |
|
|
|
46 <id>tag:ncatlab.org,2017-02-14:nLab,cyclic+loop+space</id> |
|
|
|
47 <author> |
|
|
|
48 <name>Urs Schreiber</name> |
|
|
|
49 </author> |
|
|
|
50 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/cyclic+loop+space"> |
|
|
|
51 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
52 <div class='rightHandSide'> |
|
|
|
53 <div class='toc clickDown' tabindex='0'> |
|
|
|
54 <h3 id='context'>Context</h3> |
|
|
|
55 |
|
|
|
56 <h4 id='topology'>Topology</h4> |
|
|
|
57 |
|
|
|
58 <div class='hide'> |
|
|
|
59 <p><strong><a class='existingWikiWord' href='/nlab/show/topology'>topology</a></strong> (<a class='existingWikiWord' href='/nlab/show/general+topology'>point-set topology</a>, <a class='existingWikiWord' href='/nlab/show/point-free+topology'>point-free topology</a>)</p> |
|
|
|
60 |
|
|
|
61 <p>see also <em><a class='existingWikiWord' href='/nlab/show/differential+topology'>differential topology</a></em>, <em><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></em>, <em><a class='existingWikiWord' href='/nlab/show/functional+analysis'>functional analysis</a></em> and <em><a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a> <a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a></em></p> |
|
|
|
62 |
|
|
|
63 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology'>Introduction</a></p> |
|
|
|
64 |
|
|
|
65 <p><strong>Basic concepts</strong></p> |
|
|
|
66 |
|
|
|
67 <ul> |
|
|
|
68 <li> |
|
|
|
69 <p><a class='existingWikiWord' href='/nlab/show/open+subspace'>open subset</a>, <a class='existingWikiWord' href='/nlab/show/closed+subspace'>closed subset</a>, <a class='existingWikiWord' href='/nlab/show/neighborhood'>neighbourhood</a></p> |
|
|
|
70 </li> |
|
|
|
71 |
|
|
|
72 <li> |
|
|
|
73 <p><a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a>, <a class='existingWikiWord' href='/nlab/show/locale'>locale</a></p> |
|
|
|
74 </li> |
|
|
|
75 |
|
|
|
76 <li> |
|
|
|
77 <p><a class='existingWikiWord' href='/nlab/show/topological+base'>base for the topology</a>, <a class='existingWikiWord' href='/nlab/show/neighborhood+base'>neighbourhood base</a></p> |
|
|
|
78 </li> |
|
|
|
79 |
|
|
|
80 <li> |
|
|
|
81 <p><a class='existingWikiWord' href='/nlab/show/finer+topology'>finer/coarser topology</a></p> |
|
|
|
82 </li> |
|
|
|
83 |
|
|
|
84 <li> |
|
|
|
85 <p><a class='existingWikiWord' href='/nlab/show/closed+subspace'>closure</a>, <a class='existingWikiWord' href='/nlab/show/interior'>interior</a>, <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a></p> |
|
|
|
86 </li> |
|
|
|
87 |
|
|
|
88 <li> |
|
|
|
89 <p><a class='existingWikiWord' href='/nlab/show/separation+axioms'>separation</a>, <a class='existingWikiWord' href='/nlab/show/sober+topological+space'>sobriety</a></p> |
|
|
|
90 </li> |
|
|
|
91 |
|
|
|
92 <li> |
|
|
|
93 <p><a class='existingWikiWord' href='/nlab/show/continuous+map'>continuous function</a>, <a class='existingWikiWord' href='/nlab/show/homeomorphism'>homeomorphism</a></p> |
|
|
|
94 </li> |
|
|
|
95 |
|
|
|
96 <li> |
|
|
|
97 <p><a class='existingWikiWord' href='/nlab/show/uniformly+continuous+map'>uniformly continuous function</a></p> |
|
|
|
98 </li> |
|
|
|
99 |
|
|
|
100 <li> |
|
|
|
101 <p><a class='existingWikiWord' href='/nlab/show/embedding+of+topological+spaces'>embedding</a></p> |
|
|
|
102 </li> |
|
|
|
103 |
|
|
|
104 <li> |
|
|
|
105 <p><a class='existingWikiWord' href='/nlab/show/open+map'>open map</a>, <a class='existingWikiWord' href='/nlab/show/closed+map'>closed map</a></p> |
|
|
|
106 </li> |
|
|
|
107 |
|
|
|
108 <li> |
|
|
|
109 <p><a class='existingWikiWord' href='/nlab/show/sequence'>sequence</a>, <a class='existingWikiWord' href='/nlab/show/net'>net</a>, <a class='existingWikiWord' href='/nlab/show/subnet'>sub-net</a>, <a class='existingWikiWord' href='/nlab/show/filter'>filter</a></p> |
|
|
|
110 </li> |
|
|
|
111 |
|
|
|
112 <li> |
|
|
|
113 <p><a class='existingWikiWord' href='/nlab/show/convergence'>convergence</a></p> |
|
|
|
114 </li> |
|
|
|
115 |
|
|
|
116 <li> |
|
|
|
117 <p><a class='existingWikiWord' href='/nlab/show/category'>category</a> <a class='existingWikiWord' href='/nlab/show/Top'>Top</a></p> |
|
|
|
118 |
|
|
|
119 <ul> |
|
|
|
120 <li><a class='existingWikiWord' href='/nlab/show/convenient+category+of+topological+spaces'>convenient category of topological spaces</a></li> |
|
|
|
121 </ul> |
|
|
|
122 </li> |
|
|
|
123 </ul> |
|
|
|
124 |
|
|
|
125 <p><strong><a href='Top#UniversalConstructions'>Universal constructions</a></strong></p> |
|
|
|
126 |
|
|
|
127 <ul> |
|
|
|
128 <li> |
|
|
|
129 <p><a class='existingWikiWord' href='/nlab/show/weak+topology'>initial topology</a>, <a class='existingWikiWord' href='/nlab/show/weak+topology'>final topology</a></p> |
|
|
|
130 </li> |
|
|
|
131 |
|
|
|
132 <li> |
|
|
|
133 <p><a class='existingWikiWord' href='/nlab/show/subspace'>subspace</a>, <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient space</a>,</p> |
|
|
|
134 </li> |
|
|
|
135 |
|
|
|
136 <li> |
|
|
|
137 <p>fiber space, <a class='existingWikiWord' href='/nlab/show/space+attachment'>space attachment</a></p> |
|
|
|
138 </li> |
|
|
|
139 |
|
|
|
140 <li> |
|
|
|
141 <p><a class='existingWikiWord' href='/nlab/show/product+topological+space'>product space</a>, <a class='existingWikiWord' href='/nlab/show/disjoint+union+topological+space'>disjoint union space</a></p> |
|
|
|
142 </li> |
|
|
|
143 |
|
|
|
144 <li> |
|
|
|
145 <p><a class='existingWikiWord' href='/nlab/show/mapping+cylinder'>mapping cylinder</a>, <a class='existingWikiWord' href='/nlab/show/cocylinder'>mapping cocylinder</a></p> |
|
|
|
146 </li> |
|
|
|
147 |
|
|
|
148 <li> |
|
|
|
149 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a>, <a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p> |
|
|
|
150 </li> |
|
|
|
151 |
|
|
|
152 <li> |
|
|
|
153 <p><a class='existingWikiWord' href='/nlab/show/mapping+telescope'>mapping telescope</a></p> |
|
|
|
154 </li> |
|
|
|
155 |
|
|
|
156 <li> |
|
|
|
157 <p><a class='existingWikiWord' href='/nlab/show/colimits+of+normal+spaces'>colimits of normal spaces</a></p> |
|
|
|
158 </li> |
|
|
|
159 </ul> |
|
|
|
160 |
|
|
|
161 <p><strong><a class='existingWikiWord' href='/nlab/show/stuff%2C+structure%2C+property'>Extra stuff, structure, properties</a></strong></p> |
|
|
|
162 |
|
|
|
163 <ul> |
|
|
|
164 <li> |
|
|
|
165 <p><a class='existingWikiWord' href='/nlab/show/nice+topological+space'>nice topological space</a></p> |
|
|
|
166 </li> |
|
|
|
167 |
|
|
|
168 <li> |
|
|
|
169 <p><a class='existingWikiWord' href='/nlab/show/metric+space'>metric space</a>, <a class='existingWikiWord' href='/nlab/show/metric+topology'>metric topology</a>, <a class='existingWikiWord' href='/nlab/show/metrisable+topological+space'>metrisable space</a></p> |
|
|
|
170 </li> |
|
|
|
171 |
|
|
|
172 <li> |
|
|
|
173 <p><a class='existingWikiWord' href='/nlab/show/Kolmogorov+topological+space'>Kolmogorov space</a>, <a class='existingWikiWord' href='/nlab/show/Hausdorff+space'>Hausdorff space</a>, <a class='existingWikiWord' href='/nlab/show/regular+space'>regular space</a>, <a class='existingWikiWord' href='/nlab/show/normal+space'>normal space</a></p> |
|
|
|
174 </li> |
|
|
|
175 |
|
|
|
176 <li> |
|
|
|
177 <p><a class='existingWikiWord' href='/nlab/show/sober+topological+space'>sober space</a></p> |
|
|
|
178 </li> |
|
|
|
179 |
|
|
|
180 <li> |
|
|
|
181 <p><a class='existingWikiWord' href='/nlab/show/compact+space'>compact space</a>, <a class='existingWikiWord' href='/nlab/show/proper+map'>proper map</a></p> |
|
|
|
182 |
|
|
|
183 <p><a class='existingWikiWord' href='/nlab/show/sequentially+compact+topological+space'>sequentially compact</a>, <a class='existingWikiWord' href='/nlab/show/countably+compact+topological+space'>countably compact</a>, <a class='existingWikiWord' href='/nlab/show/locally+compact+topological+space'>locally compact</a>, <a class='existingWikiWord' href='/nlab/show/sigma-compact+topological+space'>sigma-compact</a>, <a class='existingWikiWord' href='/nlab/show/paracompact+topological+space'>paracompact</a>, <a class='existingWikiWord' href='/nlab/show/countably+paracompact+topological+space'>countably paracompact</a>, <a class='existingWikiWord' href='/nlab/show/strongly+compact+topological+space'>strongly compact</a></p> |
|
|
|
184 </li> |
|
|
|
185 |
|
|
|
186 <li> |
|
|
|
187 <p><a class='existingWikiWord' href='/nlab/show/compactly+generated+topological+space'>compactly generated space</a></p> |
|
|
|
188 </li> |
|
|
|
189 |
|
|
|
190 <li> |
|
|
|
191 <p><a class='existingWikiWord' href='/nlab/show/second-countable+space'>second-countable space</a>, <a class='existingWikiWord' href='/nlab/show/first-countable+space'>first-countable space</a></p> |
|
|
|
192 </li> |
|
|
|
193 |
|
|
|
194 <li> |
|
|
|
195 <p><a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible space</a>, <a class='existingWikiWord' href='/nlab/show/locally+contractible+space'>locally contractible space</a></p> |
|
|
|
196 </li> |
|
|
|
197 |
|
|
|
198 <li> |
|
|
|
199 <p><a class='existingWikiWord' href='/nlab/show/connected+space'>connected space</a>, <a class='existingWikiWord' href='/nlab/show/locally+connected+topological+space'>locally connected space</a></p> |
|
|
|
200 </li> |
|
|
|
201 |
|
|
|
202 <li> |
|
|
|
203 <p><a class='existingWikiWord' href='/nlab/show/simply+connected+space'>simply-connected space</a>, <a class='existingWikiWord' href='/nlab/show/semi-locally+simply-connected+topological+space'>locally simply-connected space</a></p> |
|
|
|
204 </li> |
|
|
|
205 |
|
|
|
206 <li> |
|
|
|
207 <p><a class='existingWikiWord' href='/nlab/show/cell+complex'>cell complex</a>, <a class='existingWikiWord' href='/nlab/show/CW+complex'>CW-complex</a></p> |
|
|
|
208 </li> |
|
|
|
209 |
|
|
|
210 <li> |
|
|
|
211 <p><a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed space</a></p> |
|
|
|
212 </li> |
|
|
|
213 |
|
|
|
214 <li> |
|
|
|
215 <p><a class='existingWikiWord' href='/nlab/show/topological+vector+space'>topological vector space</a>, <a class='existingWikiWord' href='/nlab/show/Banach+space'>Banach space</a>, <a class='existingWikiWord' href='/nlab/show/Hilbert+space'>Hilbert space</a></p> |
|
|
|
216 </li> |
|
|
|
217 |
|
|
|
218 <li> |
|
|
|
219 <p><a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a></p> |
|
|
|
220 </li> |
|
|
|
221 |
|
|
|
222 <li> |
|
|
|
223 <p><a class='existingWikiWord' href='/nlab/show/topological+vector+bundle'>topological vector bundle</a>, <a class='existingWikiWord' href='/nlab/show/topological+K-theory'>topological K-theory</a></p> |
|
|
|
224 </li> |
|
|
|
225 |
|
|
|
226 <li> |
|
|
|
227 <p><a class='existingWikiWord' href='/nlab/show/topological+manifold'>topological manifold</a></p> |
|
|
|
228 </li> |
|
|
|
229 </ul> |
|
|
|
230 |
|
|
|
231 <p><strong>Examples</strong></p> |
|
|
|
232 |
|
|
|
233 <ul> |
|
|
|
234 <li> |
|
|
|
235 <p><a class='existingWikiWord' href='/nlab/show/empty+space'>empty space</a>, <a class='existingWikiWord' href='/nlab/show/point+space'>point space</a></p> |
|
|
|
236 </li> |
|
|
|
237 |
|
|
|
238 <li> |
|
|
|
239 <p><a class='existingWikiWord' href='/nlab/show/discrete+object'>discrete space</a>, <a class='existingWikiWord' href='/nlab/show/codiscrete+space'>codiscrete space</a></p> |
|
|
|
240 </li> |
|
|
|
241 |
|
|
|
242 <li> |
|
|
|
243 <p><a class='existingWikiWord' href='/nlab/show/Sierpinski+space'>Sierpinski space</a></p> |
|
|
|
244 </li> |
|
|
|
245 |
|
|
|
246 <li> |
|
|
|
247 <p><a class='existingWikiWord' href='/nlab/show/order+topology'>order topology</a>, <a class='existingWikiWord' href='/nlab/show/specialization+topology'>specialization topology</a>, <a class='existingWikiWord' href='/nlab/show/Scott+topology'>Scott topology</a></p> |
|
|
|
248 </li> |
|
|
|
249 |
|
|
|
250 <li> |
|
|
|
251 <p><a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a></p> |
|
|
|
252 |
|
|
|
253 <ul> |
|
|
|
254 <li><a class='existingWikiWord' href='/nlab/show/real+number'>real line</a>, <a class='existingWikiWord' href='/nlab/show/plane'>plane</a></li> |
|
|
|
255 </ul> |
|
|
|
256 </li> |
|
|
|
257 |
|
|
|
258 <li> |
|
|
|
259 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder</a>, <a class='existingWikiWord' href='/nlab/show/cone'>cone</a></p> |
|
|
|
260 </li> |
|
|
|
261 |
|
|
|
262 <li> |
|
|
|
263 <p><a class='existingWikiWord' href='/nlab/show/sphere'>sphere</a>, <a class='existingWikiWord' href='/nlab/show/ball'>ball</a></p> |
|
|
|
264 </li> |
|
|
|
265 |
|
|
|
266 <li> |
|
|
|
267 <p><a class='existingWikiWord' href='/nlab/show/circle'>circle</a>, <a class='existingWikiWord' href='/nlab/show/torus'>torus</a>, <a class='existingWikiWord' href='/nlab/show/annulus'>annulus</a>, <a class='existingWikiWord' href='/nlab/show/M%C3%B6bius+strip'>Moebius strip</a></p> |
|
|
|
268 </li> |
|
|
|
269 |
|
|
|
270 <li> |
|
|
|
271 <p><a class='existingWikiWord' href='/nlab/show/polytope'>polytope</a>, <a class='existingWikiWord' href='/nlab/show/polyhedron'>polyhedron</a></p> |
|
|
|
272 </li> |
|
|
|
273 |
|
|
|
274 <li> |
|
|
|
275 <p><a class='existingWikiWord' href='/nlab/show/projective+space'>projective space</a> (<a class='existingWikiWord' href='/nlab/show/real+projective+space'>real</a>, <a class='existingWikiWord' href='/nlab/show/complex+projective+space'>complex</a>)</p> |
|
|
|
276 </li> |
|
|
|
277 |
|
|
|
278 <li> |
|
|
|
279 <p><a class='existingWikiWord' href='/nlab/show/classifying+space'>classifying space</a></p> |
|
|
|
280 </li> |
|
|
|
281 |
|
|
|
282 <li> |
|
|
|
283 <p><a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration space</a></p> |
|
|
|
284 </li> |
|
|
|
285 |
|
|
|
286 <li> |
|
|
|
287 <p><a class='existingWikiWord' href='/nlab/show/path'>path</a>, <a class='existingWikiWord' href='/nlab/show/loop'>loop</a></p> |
|
|
|
288 </li> |
|
|
|
289 |
|
|
|
290 <li> |
|
|
|
291 <p><a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping spaces</a>: <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>compact-open topology</a>, <a class='existingWikiWord' href='/nlab/show/topology+of+uniform+convergence'>topology of uniform convergence</a></p> |
|
|
|
292 |
|
|
|
293 <ul> |
|
|
|
294 <li><a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a>, <a class='existingWikiWord' href='/nlab/show/path+space'>path space</a></li> |
|
|
|
295 </ul> |
|
|
|
296 </li> |
|
|
|
297 |
|
|
|
298 <li> |
|
|
|
299 <p><a class='existingWikiWord' href='/nlab/show/Zariski+topology'>Zariski topology</a></p> |
|
|
|
300 </li> |
|
|
|
301 |
|
|
|
302 <li> |
|
|
|
303 <p><a class='existingWikiWord' href='/nlab/show/Cantor+space'>Cantor space</a>, <a class='existingWikiWord' href='/nlab/show/Mandelbrot+set'>Mandelbrot space</a></p> |
|
|
|
304 </li> |
|
|
|
305 |
|
|
|
306 <li> |
|
|
|
307 <p><a class='existingWikiWord' href='/nlab/show/Peano+curve'>Peano curve</a></p> |
|
|
|
308 </li> |
|
|
|
309 |
|
|
|
310 <li> |
|
|
|
311 <p><a class='existingWikiWord' href='/nlab/show/line+with+two+origins'>line with two origins</a>, <a class='existingWikiWord' href='/nlab/show/long+line'>long line</a>, <a class='existingWikiWord' href='/nlab/show/Sorgenfrey+line'>Sorgenfrey line</a></p> |
|
|
|
312 </li> |
|
|
|
313 |
|
|
|
314 <li> |
|
|
|
315 <p><a class='existingWikiWord' href='/nlab/show/K-topology'>K-topology</a>, <a class='existingWikiWord' href='/nlab/show/Dowker+space'>Dowker space</a></p> |
|
|
|
316 </li> |
|
|
|
317 |
|
|
|
318 <li> |
|
|
|
319 <p><a class='existingWikiWord' href='/nlab/show/Warsaw+circle'>Warsaw circle</a>, <a class='existingWikiWord' href='/nlab/show/Hawaiian+earring+space'>Hawaiian earring space</a></p> |
|
|
|
320 </li> |
|
|
|
321 </ul> |
|
|
|
322 |
|
|
|
323 <p><strong>Basic statements</strong></p> |
|
|
|
324 |
|
|
|
325 <ul> |
|
|
|
326 <li> |
|
|
|
327 <p><a class='existingWikiWord' href='/nlab/show/Hausdorff+implies+sober'>Hausdorff spaces are sober</a></p> |
|
|
|
328 </li> |
|
|
|
329 |
|
|
|
330 <li> |
|
|
|
331 <p><a class='existingWikiWord' href='/nlab/show/schemes+are+sober'>schemes are sober</a></p> |
|
|
|
332 </li> |
|
|
|
333 |
|
|
|
334 <li> |
|
|
|
335 <p><a class='existingWikiWord' href='/nlab/show/continuous+images+of+compact+spaces+are+compact'>continuous images of compact spaces are compact</a></p> |
|
|
|
336 </li> |
|
|
|
337 |
|
|
|
338 <li> |
|
|
|
339 <p><a class='existingWikiWord' href='/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces'>closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p> |
|
|
|
340 </li> |
|
|
|
341 |
|
|
|
342 <li> |
|
|
|
343 <p><a class='existingWikiWord' href='/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact'>open subspaces of compact Hausdorff spaces are locally compact</a></p> |
|
|
|
344 </li> |
|
|
|
345 |
|
|
|
346 <li> |
|
|
|
347 <p><a class='existingWikiWord' href='/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff'>quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p> |
|
|
|
348 </li> |
|
|
|
349 |
|
|
|
350 <li> |
|
|
|
351 <p><a class='existingWikiWord' href='/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net'>compact spaces equivalently have converging subnet of every net</a></p> |
|
|
|
352 |
|
|
|
353 <ul> |
|
|
|
354 <li> |
|
|
|
355 <p><a class='existingWikiWord' href='/nlab/show/Lebesgue+number+lemma'>Lebesgue number lemma</a></p> |
|
|
|
356 </li> |
|
|
|
357 |
|
|
|
358 <li> |
|
|
|
359 <p><a class='existingWikiWord' href='/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces'>sequentially compact metric spaces are equivalently compact metric spaces</a></p> |
|
|
|
360 </li> |
|
|
|
361 |
|
|
|
362 <li> |
|
|
|
363 <p><a class='existingWikiWord' href='/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net'>compact spaces equivalently have converging subnet of every net</a></p> |
|
|
|
364 </li> |
|
|
|
365 |
|
|
|
366 <li> |
|
|
|
367 <p><a class='existingWikiWord' href='/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded'>sequentially compact metric spaces are totally bounded</a></p> |
|
|
|
368 </li> |
|
|
|
369 </ul> |
|
|
|
370 </li> |
|
|
|
371 |
|
|
|
372 <li> |
|
|
|
373 <p><a class='existingWikiWord' href='/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous'>continuous metric space valued function on compact metric space is uniformly continuous</a></p> |
|
|
|
374 </li> |
|
|
|
375 |
|
|
|
376 <li> |
|
|
|
377 <p><a class='existingWikiWord' href='/nlab/show/paracompact+Hausdorff+spaces+are+normal'>paracompact Hausdorff spaces are normal</a></p> |
|
|
|
378 </li> |
|
|
|
379 |
|
|
|
380 <li> |
|
|
|
381 <p><a class='existingWikiWord' href='/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity'>paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p> |
|
|
|
382 </li> |
|
|
|
383 |
|
|
|
384 <li> |
|
|
|
385 <p><a class='existingWikiWord' href='/nlab/show/closed+injections+are+embeddings'>closed injections are embeddings</a></p> |
|
|
|
386 </li> |
|
|
|
387 |
|
|
|
388 <li> |
|
|
|
389 <p><a class='existingWikiWord' href='/nlab/show/proper+maps+to+locally+compact+spaces+are+closed'>proper maps to locally compact spaces are closed</a></p> |
|
|
|
390 </li> |
|
|
|
391 |
|
|
|
392 <li> |
|
|
|
393 <p><a class='existingWikiWord' href='/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings'>injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p> |
|
|
|
394 </li> |
|
|
|
395 |
|
|
|
396 <li> |
|
|
|
397 <p><a class='existingWikiWord' href='/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact'>locally compact and sigma-compact spaces are paracompact</a></p> |
|
|
|
398 </li> |
|
|
|
399 |
|
|
|
400 <li> |
|
|
|
401 <p><a class='existingWikiWord' href='/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact'>locally compact and second-countable spaces are sigma-compact</a></p> |
|
|
|
402 </li> |
|
|
|
403 |
|
|
|
404 <li> |
|
|
|
405 <p><a class='existingWikiWord' href='/nlab/show/second-countable+regular+spaces+are+paracompact'>second-countable regular spaces are paracompact</a></p> |
|
|
|
406 </li> |
|
|
|
407 |
|
|
|
408 <li> |
|
|
|
409 <p><a class='existingWikiWord' href='/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces'>CW-complexes are paracompact Hausdorff spaces</a></p> |
|
|
|
410 </li> |
|
|
|
411 </ul> |
|
|
|
412 |
|
|
|
413 <p><strong>Theorems</strong></p> |
|
|
|
414 |
|
|
|
415 <ul> |
|
|
|
416 <li> |
|
|
|
417 <p><a class='existingWikiWord' href='/nlab/show/Urysohn%27s+lemma'>Urysohn's lemma</a></p> |
|
|
|
418 </li> |
|
|
|
419 |
|
|
|
420 <li> |
|
|
|
421 <p><a class='existingWikiWord' href='/nlab/show/Tietze+extension+theorem'>Tietze extension theorem</a></p> |
|
|
|
422 </li> |
|
|
|
423 |
|
|
|
424 <li> |
|
|
|
425 <p><a class='existingWikiWord' href='/nlab/show/Tychonoff+theorem'>Tychonoff theorem</a></p> |
|
|
|
426 </li> |
|
|
|
427 |
|
|
|
428 <li> |
|
|
|
429 <p><a class='existingWikiWord' href='/nlab/show/tube+lemma'>tube lemma</a></p> |
|
|
|
430 </li> |
|
|
|
431 |
|
|
|
432 <li> |
|
|
|
433 <p><a class='existingWikiWord' href='/nlab/show/Michael%27s+theorem'>Michael's theorem</a></p> |
|
|
|
434 </li> |
|
|
|
435 |
|
|
|
436 <li> |
|
|
|
437 <p><a class='existingWikiWord' href='/nlab/show/Brouwer%27s+fixed+point+theorem'>Brouwer's fixed point theorem</a></p> |
|
|
|
438 </li> |
|
|
|
439 |
|
|
|
440 <li> |
|
|
|
441 <p><a class='existingWikiWord' href='/nlab/show/topological+invariance+of+dimension'>topological invariance of dimension</a></p> |
|
|
|
442 </li> |
|
|
|
443 |
|
|
|
444 <li> |
|
|
|
445 <p><a class='existingWikiWord' href='/nlab/show/Jordan+curve+theorem'>Jordan curve theorem</a></p> |
|
|
|
446 </li> |
|
|
|
447 </ul> |
|
|
|
448 |
|
|
|
449 <p><strong>Analysis Theorems</strong></p> |
|
|
|
450 |
|
|
|
451 <ul> |
|
|
|
452 <li> |
|
|
|
453 <p><a class='existingWikiWord' href='/nlab/show/Heine-Borel+theorem'>Heine-Borel theorem</a></p> |
|
|
|
454 </li> |
|
|
|
455 |
|
|
|
456 <li> |
|
|
|
457 <p><a class='existingWikiWord' href='/nlab/show/intermediate+value+theorem'>intermediate value theorem</a></p> |
|
|
|
458 </li> |
|
|
|
459 |
|
|
|
460 <li> |
|
|
|
461 <p><a class='existingWikiWord' href='/nlab/show/extreme+value+theorem'>extreme value theorem</a></p> |
|
|
|
462 </li> |
|
|
|
463 </ul> |
|
|
|
464 |
|
|
|
465 <p><strong><a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological homotopy theory</a></strong></p> |
|
|
|
466 |
|
|
|
467 <ul> |
|
|
|
468 <li> |
|
|
|
469 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a>, <a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p> |
|
|
|
470 </li> |
|
|
|
471 |
|
|
|
472 <li> |
|
|
|
473 <p><a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a>, <a class='existingWikiWord' href='/nlab/show/deformation+retract'>deformation retract</a></p> |
|
|
|
474 </li> |
|
|
|
475 |
|
|
|
476 <li> |
|
|
|
477 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a>, <a class='existingWikiWord' href='/nlab/show/covering+space'>covering space</a></p> |
|
|
|
478 </li> |
|
|
|
479 |
|
|
|
480 <li> |
|
|
|
481 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> |
|
|
|
482 </li> |
|
|
|
483 |
|
|
|
484 <li> |
|
|
|
485 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p> |
|
|
|
486 </li> |
|
|
|
487 |
|
|
|
488 <li> |
|
|
|
489 <p><a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a></p> |
|
|
|
490 </li> |
|
|
|
491 |
|
|
|
492 <li> |
|
|
|
493 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead's theorem</a></p> |
|
|
|
494 </li> |
|
|
|
495 |
|
|
|
496 <li> |
|
|
|
497 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> |
|
|
|
498 </li> |
|
|
|
499 |
|
|
|
500 <li> |
|
|
|
501 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p> |
|
|
|
502 </li> |
|
|
|
503 |
|
|
|
504 <li> |
|
|
|
505 <p><a class='existingWikiWord' href='/nlab/show/homotopy+extension+property'>homotopy extension property</a>, <a class='existingWikiWord' href='/nlab/show/Hurewicz+cofibration'>Hurewicz cofibration</a></p> |
|
|
|
506 </li> |
|
|
|
507 |
|
|
|
508 <li> |
|
|
|
509 <p><a class='existingWikiWord' href='/nlab/show/topological+cofiber+sequence'>cofiber sequence</a></p> |
|
|
|
510 </li> |
|
|
|
511 |
|
|
|
512 <li> |
|
|
|
513 <p><a class='existingWikiWord' href='/nlab/show/Str%C3%B8m+model+structure'>Strøm model category</a></p> |
|
|
|
514 </li> |
|
|
|
515 |
|
|
|
516 <li> |
|
|
|
517 <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure on topological spaces</a></p> |
|
|
|
518 </li> |
|
|
|
519 </ul> |
|
|
|
520 </div> |
|
|
|
521 |
|
|
|
522 <h4 id='homotopy_theory'>Homotopy theory</h4> |
|
|
|
523 |
|
|
|
524 <div class='hide'> |
|
|
|
525 <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p> |
|
|
|
526 |
|
|
|
527 <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p> |
|
|
|
528 |
|
|
|
529 <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p> |
|
|
|
530 |
|
|
|
531 <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p> |
|
|
|
532 |
|
|
|
533 <p><strong>Introductions</strong></p> |
|
|
|
534 |
|
|
|
535 <ul> |
|
|
|
536 <li> |
|
|
|
537 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p> |
|
|
|
538 </li> |
|
|
|
539 |
|
|
|
540 <li> |
|
|
|
541 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p> |
|
|
|
542 </li> |
|
|
|
543 |
|
|
|
544 <li> |
|
|
|
545 <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p> |
|
|
|
546 </li> |
|
|
|
547 </ul> |
|
|
|
548 |
|
|
|
549 <p><strong>Definitions</strong></p> |
|
|
|
550 |
|
|
|
551 <ul> |
|
|
|
552 <li> |
|
|
|
553 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p> |
|
|
|
554 </li> |
|
|
|
555 |
|
|
|
556 <li> |
|
|
|
557 <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p> |
|
|
|
558 </li> |
|
|
|
559 |
|
|
|
560 <li> |
|
|
|
561 <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p> |
|
|
|
562 </li> |
|
|
|
563 |
|
|
|
564 <li> |
|
|
|
565 <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p> |
|
|
|
566 |
|
|
|
567 <ul> |
|
|
|
568 <li> |
|
|
|
569 <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p> |
|
|
|
570 |
|
|
|
571 <ul> |
|
|
|
572 <li> |
|
|
|
573 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p> |
|
|
|
574 </li> |
|
|
|
575 |
|
|
|
576 <li> |
|
|
|
577 <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p> |
|
|
|
578 </li> |
|
|
|
579 |
|
|
|
580 <li> |
|
|
|
581 <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p> |
|
|
|
582 </li> |
|
|
|
583 </ul> |
|
|
|
584 </li> |
|
|
|
585 |
|
|
|
586 <li> |
|
|
|
587 <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p> |
|
|
|
588 |
|
|
|
589 <ul> |
|
|
|
590 <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li> |
|
|
|
591 </ul> |
|
|
|
592 </li> |
|
|
|
593 </ul> |
|
|
|
594 </li> |
|
|
|
595 |
|
|
|
596 <li> |
|
|
|
597 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> |
|
|
|
598 |
|
|
|
599 <ul> |
|
|
|
600 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li> |
|
|
|
601 </ul> |
|
|
|
602 </li> |
|
|
|
603 </ul> |
|
|
|
604 |
|
|
|
605 <p><strong>Paths and cylinders</strong></p> |
|
|
|
606 |
|
|
|
607 <ul> |
|
|
|
608 <li> |
|
|
|
609 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p> |
|
|
|
610 |
|
|
|
611 <ul> |
|
|
|
612 <li> |
|
|
|
613 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p> |
|
|
|
614 </li> |
|
|
|
615 |
|
|
|
616 <li> |
|
|
|
617 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p> |
|
|
|
618 </li> |
|
|
|
619 </ul> |
|
|
|
620 </li> |
|
|
|
621 |
|
|
|
622 <li> |
|
|
|
623 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p> |
|
|
|
624 |
|
|
|
625 <ul> |
|
|
|
626 <li> |
|
|
|
627 <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p> |
|
|
|
628 </li> |
|
|
|
629 |
|
|
|
630 <li> |
|
|
|
631 <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p> |
|
|
|
632 </li> |
|
|
|
633 |
|
|
|
634 <li> |
|
|
|
635 <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p> |
|
|
|
636 </li> |
|
|
|
637 </ul> |
|
|
|
638 </li> |
|
|
|
639 |
|
|
|
640 <li> |
|
|
|
641 <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p> |
|
|
|
642 |
|
|
|
643 <ul> |
|
|
|
644 <li> |
|
|
|
645 <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p> |
|
|
|
646 </li> |
|
|
|
647 |
|
|
|
648 <li> |
|
|
|
649 <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p> |
|
|
|
650 </li> |
|
|
|
651 </ul> |
|
|
|
652 </li> |
|
|
|
653 </ul> |
|
|
|
654 |
|
|
|
655 <p><strong>Homotopy groups</strong></p> |
|
|
|
656 |
|
|
|
657 <ul> |
|
|
|
658 <li> |
|
|
|
659 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p> |
|
|
|
660 |
|
|
|
661 <ul> |
|
|
|
662 <li> |
|
|
|
663 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p> |
|
|
|
664 |
|
|
|
665 <ul> |
|
|
|
666 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li> |
|
|
|
667 </ul> |
|
|
|
668 </li> |
|
|
|
669 |
|
|
|
670 <li> |
|
|
|
671 <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p> |
|
|
|
672 </li> |
|
|
|
673 |
|
|
|
674 <li> |
|
|
|
675 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p> |
|
|
|
676 </li> |
|
|
|
677 |
|
|
|
678 <li> |
|
|
|
679 <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p> |
|
|
|
680 </li> |
|
|
|
681 </ul> |
|
|
|
682 </li> |
|
|
|
683 |
|
|
|
684 <li> |
|
|
|
685 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p> |
|
|
|
686 |
|
|
|
687 <ul> |
|
|
|
688 <li> |
|
|
|
689 <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p> |
|
|
|
690 |
|
|
|
691 <ul> |
|
|
|
692 <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li> |
|
|
|
693 </ul> |
|
|
|
694 </li> |
|
|
|
695 |
|
|
|
696 <li> |
|
|
|
697 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
698 </li> |
|
|
|
699 |
|
|
|
700 <li> |
|
|
|
701 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
702 </li> |
|
|
|
703 </ul> |
|
|
|
704 </li> |
|
|
|
705 |
|
|
|
706 <li> |
|
|
|
707 <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p> |
|
|
|
708 |
|
|
|
709 <ul> |
|
|
|
710 <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li> |
|
|
|
711 </ul> |
|
|
|
712 </li> |
|
|
|
713 </ul> |
|
|
|
714 |
|
|
|
715 <p><strong>Basic facts</strong></p> |
|
|
|
716 |
|
|
|
717 <ul> |
|
|
|
718 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li> |
|
|
|
719 </ul> |
|
|
|
720 |
|
|
|
721 <p><strong>Theorems</strong></p> |
|
|
|
722 |
|
|
|
723 <ul> |
|
|
|
724 <li> |
|
|
|
725 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> |
|
|
|
726 </li> |
|
|
|
727 |
|
|
|
728 <li> |
|
|
|
729 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> |
|
|
|
730 </li> |
|
|
|
731 |
|
|
|
732 <li> |
|
|
|
733 <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p> |
|
|
|
734 </li> |
|
|
|
735 |
|
|
|
736 <li> |
|
|
|
737 <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p> |
|
|
|
738 </li> |
|
|
|
739 |
|
|
|
740 <li> |
|
|
|
741 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p> |
|
|
|
742 </li> |
|
|
|
743 |
|
|
|
744 <li> |
|
|
|
745 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead's theorem</a></p> |
|
|
|
746 </li> |
|
|
|
747 |
|
|
|
748 <li> |
|
|
|
749 <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p> |
|
|
|
750 </li> |
|
|
|
751 |
|
|
|
752 <li> |
|
|
|
753 <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p> |
|
|
|
754 </li> |
|
|
|
755 |
|
|
|
756 <li> |
|
|
|
757 <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p> |
|
|
|
758 </li> |
|
|
|
759 </ul> |
|
|
|
760 </div> |
|
|
|
761 </div> |
|
|
|
762 </div> |
|
|
|
763 |
|
|
|
764 <h1 id='contents'>Contents</h1> |
|
|
|
765 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#AsRightBaseChange'>As right base change along <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo>→</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\ast \to \mathbf{B} S^1</annotation></semantics></math></a></li><li><a href='#ordinary_cohomology_of__on_cyclic_cohomology_of_'>Ordinary cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> on cyclic cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></a></li><li><a href='#rational_sullivan_model'>Rational Sullivan model</a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> |
|
|
|
766 <h2 id='idea'>Idea</h2> |
|
|
|
767 |
|
|
|
768 <p>Any <a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}X</annotation></semantics></math> has a canonical <a class='existingWikiWord' href='/nlab/show/action'>action</a> (<a class='existingWikiWord' href='/nlab/show/infinity-action'>infinity-action</a>) of the <a class='existingWikiWord' href='/nlab/show/circle+group'>circle group</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>. The <a class='existingWikiWord' href='/nlab/show/homotopy+quotient'>homotopy quotient</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}(X)/S^1</annotation></semantics></math> of this action might be called the <em>cyclic loop space</em> of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>.</p> |
|
|
|
769 |
|
|
|
770 <p>If <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Spec</mi><mo stretchy='false'>(</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>X = Spec(A)</annotation></semantics></math> is an <a class='existingWikiWord' href='/nlab/show/affine+variety'>affine variety</a> regarded in <a class='existingWikiWord' href='/nlab/show/derived+algebraic+geometry'>derived algebraic geometry</a>, then <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒪</mi><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>Spec</mi><mo stretchy='false'>(</mo><mi>A</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{O}(\mathcal{L}Spec(A))</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/Hochschild+cohomology'>Hochschild homology</a> of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒪</mi><mo stretchy='false'>(</mo><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>Spec</mi><mo stretchy='false'>(</mo><mi>A</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msup><mi>S</mi> <mn>1</mn></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{O}((\mathcal{L}Spec(A))/S^1)</annotation></semantics></math> the corresponding <a class='existingWikiWord' href='/nlab/show/cyclic+homology'>cyclic homology</a>, see the discussion at <em><a class='existingWikiWord' href='/nlab/show/Hochschild+cohomology'>Hochschild cohomology</a></em>.</p> |
|
|
|
771 |
|
|
|
772 <p>If <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>X = Y//G</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/homotopy+quotient'>homotopy quotient</a> of a <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a> by a <a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a> action, regarded as a locally constant <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stack, so that the <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>-action on <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{L}(X//G)</annotation></semantics></math> is an <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>B</mi><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>B \mathbb{Z}</annotation></semantics></math>-action, then the restriction of the cyclic loop space to the constant loops <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ℒ</mi> <mi>const</mi></msub><mi>Y</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi><mo>→</mo><mi>ℒ</mi><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo stretchy='false'>/</mo><mi>G</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{L}_{const}Y//G \to \mathcal{L}(Y//G)</annotation></semantics></math> has been called the <em>twisted loop space</em> in (<a href='#Witten88'>Witten 88</a>). This terminology has been widely adopted, for example in the context of the <a class='existingWikiWord' href='/nlab/show/transchromatic+character'>transchromatic character</a> map (<a href='#Stapleton11'>Stapleton 11</a>)</p> |
|
|
|
773 |
|
|
|
774 <h2 id='properties'>Properties</h2> |
|
|
|
775 |
|
|
|
776 <h3 id='AsRightBaseChange'>As right base change along <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo>→</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\ast \to \mathbf{B} S^1</annotation></semantics></math></h3> |
|
|
|
777 |
|
|
|
778 <p>The cyclic loop space <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> is equivalently the right <a class='existingWikiWord' href='/nlab/show/base+change'>base change</a>/<a class='existingWikiWord' href='/nlab/show/dependent+product'>dependent product</a> along the canonical point inclusion <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo>→</mo><mi>B</mi><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\ast \to B S^1</annotation></semantics></math> (<a href='base+change#CyclicLoopSpace'>this prop.</a>) into the <a class='existingWikiWord' href='/nlab/show/delooping'>delooping</a> of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math> (the <a class='existingWikiWord' href='/nlab/show/classifying+space'>classifying space</a> of the <a class='existingWikiWord' href='/nlab/show/circle+group'>circle group</a> when realized in the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>homotopy theory of</a> <a class='existingWikiWord' href='/nlab/show/topological+space'>topological spaces</a>). See also at <em><a class='existingWikiWord' href='/nlab/show/double+dimensional+reduction'>double dimensional reduction</a></em> (<a href='#BMSS19'>BMSS 19, Sec. 2.2</a>, following <a href='#FSS18'>FSS 18, Sec. 3</a>).</p> |
|
|
|
779 |
|
|
|
780 <h3 id='ordinary_cohomology_of__on_cyclic_cohomology_of_'>Ordinary cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> on cyclic cohomology of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></h3> |
|
|
|
781 |
|
|
|
782 <p>Let <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> be a <a class='existingWikiWord' href='/nlab/show/simply+connected+space'>simply connected</a> <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a>.</p> |
|
|
|
783 |
|
|
|
784 <p>The <a class='existingWikiWord' href='/nlab/show/ordinary+cohomology'>ordinary cohomology</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>H^\bullet</annotation></semantics></math> of its <a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a> is the <a class='existingWikiWord' href='/nlab/show/Hochschild+cohomology'>Hochschild homology</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>HH</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>HH_\bullet</annotation></semantics></math> of its <a class='existingWikiWord' href='/nlab/show/singular+cohomology'>singular chains</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>C^\bullet(X)</annotation></semantics></math>:</p> |
|
|
|
785 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HH</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
786 H^\bullet(\mathcal{L}X) |
|
|
|
787 \simeq |
|
|
|
788 HH_\bullet( C^\bullet(X) ) |
|
|
|
789 \,. |
|
|
|
790 |
|
|
|
791 </annotation></semantics></math></div> |
|
|
|
792 <p>Moreover the <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>-equivariant cohomology of the loop space, hence the ordinary cohomology of the cyclic loop space <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>\mathcal{L}X \sslash S^1</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/cyclic+homology'>cyclic homology</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>HC</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>HC_\bullet</annotation></semantics></math> of the singular chains:</p> |
|
|
|
793 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HC</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
794 H^\bullet(\mathcal{L}X \sslash S^1) |
|
|
|
795 \simeq |
|
|
|
796 HC_\bullet( C^\bullet(X) ) |
|
|
|
797 |
|
|
|
798 </annotation></semantics></math></div> |
|
|
|
799 <p>(<a href='#Jones87'>Jones 87, Thm. A</a>, review in <a href='#Loday92'>Loday 92, Cor. 7.3.14</a>, <a href='#Loday11'>Loday 11, Sec. 4</a>)</p> |
|
|
|
800 |
|
|
|
801 <p>If the <a class='existingWikiWord' href='/nlab/show/coefficient'>coefficients</a> are <a class='existingWikiWord' href='/nlab/show/rational+number'>rational</a>, and <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is of <a class='existingWikiWord' href='/nlab/show/finite+type'>finite type</a> then this may be computed by the <em><a class='existingWikiWord' href='/nlab/show/Sullivan+model+of+loop+space'>Sullivan model for free loop spaces</a></em>, see there the section on <em><a href='Sullivan+model+of+free+loop+space#RelationToHochschildHomology'>Relation to Hochschild homology</a></em>.</p> |
|
|
|
802 |
|
|
|
803 <p>In the special case that the <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a> <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> carries the structure of a <a class='existingWikiWord' href='/nlab/show/smooth+manifold'>smooth manifold</a>, then the singular cochains on <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> are equivalent to the <a class='existingWikiWord' href='/nlab/show/differential+graded-commutative+algebra'>dgc-algebra</a> of <a class='existingWikiWord' href='/nlab/show/differential+form'>differential forms</a> (the <a class='existingWikiWord' href='/nlab/show/de+Rham+complex'>de Rham algebra</a>) and hence in this case the statement becomes that</p> |
|
|
|
804 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HH</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>Ω</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
805 H^\bullet(\mathcal{L}X) |
|
|
|
806 \simeq |
|
|
|
807 HH_\bullet( \Omega^\bullet(X) ) |
|
|
|
808 \,. |
|
|
|
809 |
|
|
|
810 </annotation></semantics></math></div><div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>ℒ</mi><mi>X</mi><mo>⫽</mo><msup><mi>S</mi> <mn>1</mn></msup><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>HC</mi> <mo>•</mo></msub><mo stretchy='false'>(</mo><msup><mi>Ω</mi> <mo>•</mo></msup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
811 H^\bullet(\mathcal{L}X \sslash S^1) |
|
|
|
812 \simeq |
|
|
|
813 HC_\bullet( \Omega^\bullet(X) ) |
|
|
|
814 \,. |
|
|
|
815 |
|
|
|
816 </annotation></semantics></math></div> |
|
|
|
817 <p>This is known as <em><a class='existingWikiWord' href='/nlab/show/Jones%27+theorem'>Jones' theorem</a></em> (<a href='#Jones87'>Jones 87</a>)</p> |
|
|
|
818 |
|
|
|
819 <p>An <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>infinity-category theoretic</a> proof of this fact is indicated at <em><a href='Hochschild+cohomology#JonesTheorem'>Hochschild cohomology – Jones’ theorem</a></em>.</p> |
|
|
|
820 |
|
|
|
821 <h3 id='rational_sullivan_model'>Rational Sullivan model</h3> |
|
|
|
822 |
|
|
|
823 <p>See at <em><a class='existingWikiWord' href='/nlab/show/Sullivan+model+of+loop+space'>Sullivan model for free loop space</a></em></p> |
|
|
|
824 |
|
|
|
825 <h2 id='related_concepts'>Related concepts</h2> |
|
|
|
826 |
|
|
|
827 <ul> |
|
|
|
828 <li> |
|
|
|
829 <p><a class='existingWikiWord' href='/nlab/show/double+dimensional+reduction'>double dimensional reduction</a></p> |
|
|
|
830 </li> |
|
|
|
831 |
|
|
|
832 <li> |
|
|
|
833 <p><a class='existingWikiWord' href='/nlab/show/cyclic+loop+stack'>cyclic loop stack</a></p> |
|
|
|
834 </li> |
|
|
|
835 |
|
|
|
836 <li> |
|
|
|
837 <p><a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a>, <a class='existingWikiWord' href='/nlab/show/free+loop+orbifold'>free loop stack</a></p> |
|
|
|
838 </li> |
|
|
|
839 </ul> |
|
|
|
840 |
|
|
|
841 <h2 id='references'>References</h2> |
|
|
|
842 |
|
|
|
843 <p>The notion of the cyclic loop space of a topological space appears as:</p> |
|
|
|
844 |
|
|
|
845 <ul> |
|
|
|
846 <li id='Jones87'> |
|
|
|
847 <p><a class='existingWikiWord' href='/nlab/show/John+David+Stuart+Jones'>John D.S. Jones</a>, <em>Cyclic homology and equivariant homology</em>, Invent. Math. <strong>87</strong>, 403-423 (1987) (<a href='https://math.berkeley.edu/~nadler/jones.pdf'>pdf</a>, <a href='https://doi.org/10.1007/BF01389424'>doi:10.1007/BF01389424</a>)</p> |
|
|
|
848 </li> |
|
|
|
849 |
|
|
|
850 <li> |
|
|
|
851 <p><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>The cyclic groups and the free loop space</em>, Commentarii Mathematici Helvetici <strong>62</strong> (1987) 423–449 (<a href='https://doi.org/10.1007/BF02564455'>doi:10.1007/BF02564455</a>, <a href='https://eudml.org/doc/140092'>dml:140092</a>)</p> |
|
|
|
852 </li> |
|
|
|
853 |
|
|
|
854 <li id='Witten88'> |
|
|
|
855 <p><a class='existingWikiWord' href='/nlab/show/Edward+Witten'>Edward Witten</a>, <em>The index of the Dirac operator in loop space</em>. In Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), volume 1326 of Lecture Notes in Math., pages 161–181. Springer, Berlin, 1988 (<a href='https://doi.org/10.1007/BFb0078045'>doi:10.1007/BFb0078045</a>)</p> |
|
|
|
856 </li> |
|
|
|
857 |
|
|
|
858 <li id='Loday92'> |
|
|
|
859 <p><a class='existingWikiWord' href='/nlab/show/Jean-Louis+Loday'>Jean-Louis Loday</a>, <em>Cyclic Spaces and <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>S^1</annotation></semantics></math>-Equivariant Homology</em> (<a href='https://link.springer.com/chapter/10.1007/978-3-662-21739-9_7'>doi:10.1007/978-3-662-21739-9_7</a>)</p> |
|
|
|
860 |
|
|
|
861 <p>Chapter 7 in: <em>Cyclic Homology</em>, Grundlehren <strong>301</strong>, Springer 1992 (<a href='https://link.springer.com/book/10.1007/978-3-662-21739-9'>doi:10.1007/978-3-662-21739-9</a>)</p> |
|
|
|
862 </li> |
|
|
|
863 |
|
|
|
864 <li id='Loday11'> |
|
|
|
865 <p><a class='existingWikiWord' href='/nlab/show/Jean-Louis+Loday'>Jean-Louis Loday</a>, Section 4 of: <em>Free loop space and homology</em>, Chapter 4 in: Janko Latchev, Alexandru Oancea (eds.): <em>Free Loop Spaces in Geometry and Topology</em>, IRMA Lectures in Mathematics and Theoretical Physics <strong>24</strong>, EMS 2015 (<a href='https://arxiv.org/abs/1110.0405'>arXiv:1110.0405</a>, <a href='https://bookstore.ams.org/emsilmtp-24/'>ISBN:978-3-03719-153-8</a>)</p> |
|
|
|
866 </li> |
|
|
|
867 |
|
|
|
868 <li id='Stapleton11'> |
|
|
|
869 <p><a class='existingWikiWord' href='/nlab/show/Nathaniel+Stapleton'>Nathaniel Stapleton</a>, <em>Transchromatic generalized character maps</em>, Algebr. Geom. Topol. 13 (2013) 171-203 (<a href='https://arxiv.org/abs/1110.3346'>arXiv:1110.3346</a>)</p> |
|
|
|
870 </li> |
|
|
|
871 </ul> |
|
|
|
872 |
|
|
|
873 <p>Specifically on cyclic loop spaces of <a class='existingWikiWord' href='/nlab/show/sphere'>n-spheres</a>:</p> |
|
|
|
874 |
|
|
|
875 <ul> |
|
|
|
876 <li><a class='existingWikiWord' href='/nlab/show/Nancy+Hingston'>Nancy Hingston</a>, <em>An Equivariant Model for the Free Loop Space of <math class='maruku-mathml' display='inline' id='mathml_1b9519ae4bd1bbcadb692754f6cd72dfe8e06a9b_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>N</mi></msup></mrow><annotation encoding='application/x-tex'>S^N</annotation></semantics></math></em>, American Journal of Mathematics <strong>114</strong> 1 (1992) 139-155 (<a href='https://doi.org/10.2307/2374740'>doi:10.2307/2374740</a>, <a href='https://www.jstor.org/stable/2374740'>jstor:2374740</a>)</li> |
|
|
|
877 </ul> |
|
|
|
878 |
|
|
|
879 <p>See also:</p> |
|
|
|
880 |
|
|
|
881 <ul> |
|
|
|
882 <li><a class='existingWikiWord' href='/nlab/show/Urs+Frauenfelder'>Urs Frauenfelder</a>, <em>Dihedral homology and the moon</em>, J. Fixed Point Theory Appl. <strong>14</strong> (2013) 55–69 (<a href='https://arxiv.org/abs/1204.4549'>arXiv:1204.4549</a>, <a href='https://doi.org/10.1007/s11784-013-0146-z'>doi:10.1007/s11784-013-0146-z</a>)</li> |
|
|
|
883 </ul> |
|
|
|
884 |
|
|
|
885 <p>A version of the cyclic loop space of <a class='existingWikiWord' href='/nlab/show/orbifold'>orbifolds</a>, or at least its restriction to constant loops, namely <a class='existingWikiWord' href='/nlab/show/Huan%27s+inertia+orbifold'>Huan's inertia orbifold</a>, is discussed in the context of <a class='existingWikiWord' href='/nlab/show/equivariant+elliptic+cohomology'>equivariant elliptic cohomology</a> via <a class='existingWikiWord' href='/nlab/show/Tate+K-theory'>Tate K-theory</a> in:</p> |
|
|
|
886 |
|
|
|
887 <ul> |
|
|
|
888 <li id='Huan18'><a class='existingWikiWord' href='/nlab/show/Zhen+Huan'>Zhen Huan</a>, Def. 2.14 of: <em>Quasi-Elliptic Cohomology I</em>, Advances in Mathematics, Volume 337, 15 October 2018, Pages 107-138 (<a href='https://arxiv.org/abs/1805.06305'>arXiv:1805.06305</a>, <a href='https://doi.org/10.1016/j.aim.2018.08.007'>doi:10.1016/j.aim.2018.08.007</a>)</li> |
|
|
|
889 </ul> |
|
|
|
890 |
|
|
|
891 <p>following</p> |
|
|
|
892 |
|
|
|
893 <ul> |
|
|
|
894 <li><a class='existingWikiWord' href='/nlab/show/Zhen+Huan'>Zhen Huan</a>, Section 2.1.2 of: <em>Quasi-elliptic cohomology</em>, 2017 (<a href='http://hdl.handle.net/2142/97268'>hdl</a>)</li> |
|
|
|
895 </ul> |
|
|
|
896 |
|
|
|
897 <p>and recalled/expanded on in several followup articles, such as in</p> |
|
|
|
898 |
|
|
|
899 <ul> |
|
|
|
900 <li><a class='existingWikiWord' href='/nlab/show/Zhen+Huan'>Zhen Huan</a>, Section 2 of <em>Quasi-theories</em> (<a href='https://arxiv.org/abs/1809.06651'>arXiv:1809.06651</a>)</li> |
|
|
|
901 </ul> |
|
|
|
902 |
|
|
|
903 <p>The above formulation of cyclic loop spaces, in the generality of <a class='existingWikiWord' href='/nlab/show/infinity-stack'>∞-stacks</a>, as right <a class='existingWikiWord' href='/nlab/show/base+change'>base change</a> to the <a class='existingWikiWord' href='/nlab/show/delooping'>delooping</a> of the <a class='existingWikiWord' href='/nlab/show/circle+group'>circle group</a>, and its relation to <a class='existingWikiWord' href='/nlab/show/double+dimensional+reduction'>double dimensional reduction</a> in <a class='existingWikiWord' href='/nlab/show/brane'>brane</a>-physics, is due to:</p> |
|
|
|
904 |
|
|
|
905 <ul> |
|
|
|
906 <li id='BMSS19'><a class='existingWikiWord' href='/nlab/show/Vincent+Braunack-Mayer'>Vincent Braunack-Mayer</a>, <a class='existingWikiWord' href='/nlab/show/Hisham+Sati'>Hisham Sati</a>, <a class='existingWikiWord' href='/nlab/show/Urs+Schreiber'>Urs Schreiber</a>: Section 2.2 of <em><a class='existingWikiWord' href='/schreiber/show/Gauge+enhancement+of+Super+M-Branes' title='schreiber'>Gauge enhancement of Super M-Branes via rational parameterized stable homotopy theory</a></em>, Communications in Mathematical Physics, <strong>371</strong> 197 (2019) (<a href='https://doi.org/10.1007/s00220-019-03441-4'>doi:10.1007/s00220-019-03441-4</a>, <a href='https://arxiv.org/abs/1806.01115'>arXiv:1806.01115</a>)</li> |
|
|
|
907 </ul> |
|
|
|
908 |
|
|
|
909 <p>following the analogous discussion in <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational homotopy theory</a> in</p> |
|
|
|
910 |
|
|
|
911 <ul> |
|
|
|
912 <li id='FSS18'><a class='existingWikiWord' href='/nlab/show/Domenico+Fiorenza'>Domenico Fiorenza</a>, <a class='existingWikiWord' href='/nlab/show/Hisham+Sati'>Hisham Sati</a>, <a class='existingWikiWord' href='/nlab/show/Urs+Schreiber'>Urs Schreiber</a>, Section 3 of: <em><a class='existingWikiWord' href='/schreiber/show/T-Duality+from+super+Lie+n-algebra+cocycles+for+super+p-branes' title='schreiber'>T-Duality from super Lie $n$-algebra cocycles for super $p$-branes</a></em>, <a href='http://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0022/0005/'>ATMP Volume 22 (2018) Number 5</a>, <a href='http://dx.doi.org/10.4310/ATMP.2018.v22.n5.a3'>doi:10.4310/ATMP.2018.v22.n5.a3</a>, <a href='https://arxiv.org/abs/1611.06536'>arXiv:1611.06536</a>)</li> |
|
|
|
913 </ul> |
|
|
|
914 |
|
|
|
915 <p>with exposition in</p> |
|
|
|
916 |
|
|
|
917 <ul> |
|
|
|
918 <li><a class='existingWikiWord' href='/nlab/show/Urs+Schreiber'>Urs Schreiber</a>, <a href='https://ncatlab.org/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes#DoubleDimensionalReduction'>Section 4</a> of: <em><a class='existingWikiWord' href='/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes' title='schreiber'>Super Lie n-algebra of Super p-branes</a></em> (2016)</li> |
|
|
|
919 </ul> |
|
|
|
920 |
|
|
|
921 <p> |
|
|
|
922 </p> |
|
|
|
923 |
|
|
|
924 <p> |
|
|
|
925 |
|
|
|
926 </p> </div> |
|
|
|
927 </content> |
|
|
|
928 </entry> |
|
|
|
929 <entry> |
|
|
|
930 <title type="html">Nancy Hingston</title> |
|
|
|
931 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Nancy+Hingston"/> |
|
|
|
932 <updated>2021-07-02T09:15:40Z</updated> |
|
|
|
933 <published>2021-07-02T09:14:11Z</published> |
|
|
|
934 <id>tag:ncatlab.org,2021-07-02:nLab,Nancy+Hingston</id> |
|
|
|
935 <author> |
|
|
|
936 <name>Urs Schreiber</name> |
|
|
|
937 </author> |
|
|
|
938 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Nancy+Hingston"> |
|
|
|
939 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
940 <ul> |
|
|
|
941 <li> |
|
|
|
942 <p><a href='https://en.wikipedia.org/wiki/Nancy_Hingston'>Wikipedia entry</a></p> |
|
|
|
943 </li> |
|
|
|
944 |
|
|
|
945 <li> |
|
|
|
946 <p><a href='https://science.tcnj.edu/school-information/women-in-science/dr-nancy-hingston/'>Institute page</a></p> |
|
|
|
947 </li> |
|
|
|
948 |
|
|
|
949 <li> |
|
|
|
950 <p><a href='https://science.tcnj.edu/school-information/women-in-science/dr-nancy-hingston/'>Mathematics Genealogy page</a></p> |
|
|
|
951 </li> |
|
|
|
952 </ul> |
|
|
|
953 |
|
|
|
954 <h2 id='selected_writings'>Selected writings</h2> |
|
|
|
955 |
|
|
|
956 <p>On the <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a> of <a class='existingWikiWord' href='/nlab/show/sphere'>n-spheres</a>:</p> |
|
|
|
957 |
|
|
|
958 <ul> |
|
|
|
959 <li><a class='existingWikiWord' href='/nlab/show/Nancy+Hingston'>Nancy Hingston</a>, <em>An Equivariant Model for the Free Loop Space of <math class='maruku-mathml' display='inline' id='mathml_6597653e93efa254ef9530d15b5b7be84786eb66_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>N</mi></msup></mrow><annotation encoding='application/x-tex'>S^N</annotation></semantics></math></em>, American Journal of Mathematics <strong>114</strong> 1 (1992) 139-155 (<a href='https://doi.org/10.2307/2374740'>doi:10.2307/2374740</a>, <a href='https://www.jstor.org/stable/2374740'>jstor:2374740</a>)</li> |
|
|
|
960 </ul> |
|
|
|
961 |
|
|
|
962 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p> </div> |
|
|
|
963 </content> |
|
|
|
964 </entry> |
|
|
|
965 <entry> |
|
|
|
966 <title type="html">Ralph Cohen</title> |
|
|
|
967 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Ralph+Cohen"/> |
|
|
|
968 <updated>2021-07-02T08:58:22Z</updated> |
|
|
|
969 <published>2010-11-26T21:46:21Z</published> |
|
|
|
970 <id>tag:ncatlab.org,2010-11-26:nLab,Ralph+Cohen</id> |
|
|
|
971 <author> |
|
|
|
972 <name>Urs Schreiber</name> |
|
|
|
973 </author> |
|
|
|
974 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Ralph+Cohen"> |
|
|
|
975 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
976 <ul> |
|
|
|
977 <li><a href='http://math.stanford.edu/~ralph/'>website</a></li> |
|
|
|
978 </ul> |
|
|
|
979 |
|
|
|
980 <h2 id='selected_writings'>Selected writings</h2> |
|
|
|
981 |
|
|
|
982 <p>On <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a>:</p> |
|
|
|
983 |
|
|
|
984 <ul> |
|
|
|
985 <li><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>The cyclic groups and the free loop space</em>, Commentarii Mathematici Helvetici <strong>62</strong> (1987) 423–449 (<a href='https://doi.org/10.1007/BF02564455'>doi:10.1007/BF02564455</a>, <a href='https://eudml.org/doc/140092'>dml:140092</a>)</li> |
|
|
|
986 </ul> |
|
|
|
987 |
|
|
|
988 <p>On <a class='existingWikiWord' href='/nlab/show/string+topology'>string topology</a>:</p> |
|
|
|
989 |
|
|
|
990 <ul> |
|
|
|
991 <li> |
|
|
|
992 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, John R. Klein, <a class='existingWikiWord' href='/nlab/show/Dennis+Sullivan'>Dennis Sullivan</a>, <em>The homotopy invariance of the string topology loop product and string bracket</em>, J. of Topology 2008 <strong>1</strong>(2):391-408; <a href='http://dx.doi.org/10.1112/jtopol/jtn001'>doi</a></p> |
|
|
|
993 </li> |
|
|
|
994 |
|
|
|
995 <li> |
|
|
|
996 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>Homotopy and geometric perspectives on string topology</em> (<a href='http://math.stanford.edu/~ralph/skyesummary.pdf'>pdf</a>)</p> |
|
|
|
997 </li> |
|
|
|
998 |
|
|
|
999 <li id='CohenJones'> |
|
|
|
1000 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/John+David+Stuart+Jones'>John David Stuart Jones</a>, <em>A homotopy theoretic realization of string topology</em> , Math. Ann. 324 (2002), no. 4, (<a href='http://arxiv.org/abs/math/0107187'>arXiv:0107187</a>)</p> |
|
|
|
1001 </li> |
|
|
|
1002 |
|
|
|
1003 <li id='CohenGodin03'> |
|
|
|
1004 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Veronique+Godin'>Veronique Godin</a>, <em><a class='existingWikiWord' href='/nlab/show/A+Polarized+View+of+String+Topology'>A Polarized View of String Topology</a></em> (<a href='http://arxiv.org/abs/math/0303003'>arXiv:math/0303003</a>)</p> |
|
|
|
1005 </li> |
|
|
|
1006 |
|
|
|
1007 <li> |
|
|
|
1008 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Alexander+Voronov'>Alexander Voronov</a>, <em>Notes on string topology</em>, in: <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Kathryn+Hess'>Kathryn Hess</a>, <a class='existingWikiWord' href='/nlab/show/Alexander+Voronov'>Alexander Voronov</a>, <em>String topology and cyclic homology</em>, Advanced courses in mathematics CRM Barcelona, Birkhäuser 2006 (<a href='http://arxiv.org/abs/math/0503625'>math.GT/05036259</a>, <a href='https://doi.org/10.1007/3-7643-7388-1'>doi:10.1007/3-7643-7388-1</a>, <a href='http://gen.lib.rus.ec/get?md5=adde9464705ede0fea6b435edb58fbe7'>pdf</a>)</p> |
|
|
|
1009 </li> |
|
|
|
1010 |
|
|
|
1011 <li> |
|
|
|
1012 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <a class='existingWikiWord' href='/nlab/show/John+David+Stuart+Jones'>John Jones</a>, <em>Gauge theory and string topology</em> (<a href='http://arxiv.org/abs/1304.0613'>arXiv:1304.0613</a>)</p> |
|
|
|
1013 </li> |
|
|
|
1014 </ul> |
|
|
|
1015 |
|
|
|
1016 <p>On <a class='existingWikiWord' href='/nlab/show/moduli+space+of+monopoles'>moduli spaces of monopoles</a> related to <a class='existingWikiWord' href='/nlab/show/braid+group'>braid groups</a>:</p> |
|
|
|
1017 |
|
|
|
1018 <ul> |
|
|
|
1019 <li> |
|
|
|
1020 <p><a class='existingWikiWord' href='/nlab/show/Fred+Cohen'>Fred Cohen</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, B. M. Mann, R. J. Milgram, <em>The topology of rational functions and divisors of surfaces</em>, Acta Math (1991) 166: 163 (<a href='https://doi.org/10.1007/BF02398886'>doi:10.1007/BF02398886</a>)</p> |
|
|
|
1021 </li> |
|
|
|
1022 |
|
|
|
1023 <li> |
|
|
|
1024 <p><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, John D. S. Jones <em>Monopoles, braid groups, and the Dirac operator</em>, Comm. Math. Phys. Volume 158, Number 2 (1993), 241-266 (<a href='https://projecteuclid.org/euclid.cmp/1104254240'>euclid:cmp/1104254240</a>)</p> |
|
|
|
1025 </li> |
|
|
|
1026 </ul> |
|
|
|
1027 |
|
|
|
1028 <p>and more generally on <a class='existingWikiWord' href='/nlab/show/moduli+space'>moduli spaces</a>:</p> |
|
|
|
1029 |
|
|
|
1030 <ul> |
|
|
|
1031 <li><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>Stability phenomena in the topology of moduli spaces</em> (<a href='https://arxiv.org/abs/0908.1938'>arXiv:0908.1938</a>)</li> |
|
|
|
1032 </ul> |
|
|
|
1033 |
|
|
|
1034 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p> </div> |
|
|
|
1035 </content> |
|
|
|
1036 </entry> |
|
|
|
1037 <entry> |
|
|
|
1038 <title type="html">Gunnar Carlsson</title> |
|
|
|
1039 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Gunnar+Carlsson"/> |
|
|
|
1040 <updated>2021-07-02T08:57:51Z</updated> |
|
|
|
1041 <published>2014-04-13T09:19:17Z</published> |
|
|
|
1042 <id>tag:ncatlab.org,2014-04-13:nLab,Gunnar+Carlsson</id> |
|
|
|
1043 <author> |
|
|
|
1044 <name>Urs Schreiber</name> |
|
|
|
1045 </author> |
|
|
|
1046 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Gunnar+Carlsson"> |
|
|
|
1047 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
1048 <ul> |
|
|
|
1049 <li><a href='http://math.stanford.edu/~gunnar/'>webpage</a></li> |
|
|
|
1050 </ul> |
|
|
|
1051 |
|
|
|
1052 <h2 id='selected_writings'>Selected writings</h2> |
|
|
|
1053 |
|
|
|
1054 <p>On <a class='existingWikiWord' href='/nlab/show/cyclic+loop+space'>cyclic loop spaces</a>:</p> |
|
|
|
1055 |
|
|
|
1056 <ul> |
|
|
|
1057 <li><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>The cyclic groups and the free loop space</em>, Commentarii Mathematici Helvetici <strong>62</strong> (1987) 423–449 (<a href='https://doi.org/10.1007/BF02564455'>doi:10.1007/BF02564455</a>, <a href='https://eudml.org/doc/140092'>dml:140092</a>)</li> |
|
|
|
1058 </ul> |
|
|
|
1059 |
|
|
|
1060 <p>On <a class='existingWikiWord' href='/nlab/show/topological+data+analysis'>topological data analysis</a>:</p> |
|
|
|
1061 |
|
|
|
1062 <ul> |
|
|
|
1063 <li><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <em>Topology and data</em>, Bull. Amer. Math. Soc. 46 (2009), 255-308 (<a href='https://doi.org/10.1090/S0273-0979-09-01249-X'>doi:10.1090/S0273-0979-09-01249-X</a>)</li> |
|
|
|
1064 </ul> |
|
|
|
1065 |
|
|
|
1066 <p>On <a class='existingWikiWord' href='/nlab/show/persistent+homology'>persistent homology</a>:</p> |
|
|
|
1067 |
|
|
|
1068 <ul> |
|
|
|
1069 <li> |
|
|
|
1070 <p>A. Zomorodian, <a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <em>Computing persistent homology</em>, Discrete Comput. Geom. <strong>33</strong>, 249–274 (2005)</p> |
|
|
|
1071 </li> |
|
|
|
1072 |
|
|
|
1073 <li> |
|
|
|
1074 <p><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, V. de Silva, <em>Zigzag persistence</em>, <a href='http://arxiv.org/abs/0812.0197'>arXiv:0812.0197</a></p> |
|
|
|
1075 </li> |
|
|
|
1076 |
|
|
|
1077 <li> |
|
|
|
1078 <p><a class='existingWikiWord' href='/nlab/show/Gunnar+Carlsson'>Gunnar Carlsson</a>, <em>Persistent Homology and Applied Homotopy Theory</em>, in: <a class='existingWikiWord' href='/nlab/show/Handbook+of+Homotopy+Theory'>Handbook of Homotopy Theory</a>, CRC Press, 2019 (<a href='https://arxiv.org/abs/2004.00738'>arXiv:2004.00738</a>)</p> |
|
|
|
1079 </li> |
|
|
|
1080 </ul> |
|
|
|
1081 |
|
|
|
1082 <h2 id='related_lab_entries'>Related <math class='maruku-mathml' display='inline' id='mathml_2134ce935eca0d191efd191c47bb046d957cb8f1_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>Lab entries</h2> |
|
|
|
1083 |
|
|
|
1084 <ul> |
|
|
|
1085 <li> |
|
|
|
1086 <p><a class='existingWikiWord' href='/nlab/show/equivariant+stable+homotopy+theory'>equivariant stable homotopy theory</a></p> |
|
|
|
1087 </li> |
|
|
|
1088 |
|
|
|
1089 <li> |
|
|
|
1090 <p><a class='existingWikiWord' href='/nlab/show/Segal-Carlsson+completion+theorem'>Segal conjecture</a>, <a class='existingWikiWord' href='/nlab/show/Sullivan+conjecture'>Sullivan conjecture</a></p> |
|
|
|
1091 |
|
|
|
1092 <p><a class='existingWikiWord' href='/nlab/show/Burnside+ring'>Burnside ring</a>, <a class='existingWikiWord' href='/nlab/show/stable+cohomotopy'>stable cohomotopy</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+stable+cohomotopy'>equivariant stable cohomotopy</a></p> |
|
|
|
1093 </li> |
|
|
|
1094 |
|
|
|
1095 <li> |
|
|
|
1096 <p><a class='existingWikiWord' href='/nlab/show/persistent+homology'>persistent homology</a></p> |
|
|
|
1097 </li> |
|
|
|
1098 </ul> |
|
|
|
1099 |
|
|
|
1100 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p> |
|
|
|
1101 |
|
|
|
1102 <p> |
|
|
|
1103 </p> </div> |
|
|
|
1104 </content> |
|
|
|
1105 </entry> |
|
|
|
1106 <entry> |
|
|
|
1107 <title type="html">Doug Ravenel</title> |
|
|
|
1108 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Doug+Ravenel"/> |
|
|
|
1109 <updated>2021-07-02T08:31:03Z</updated> |
|
|
|
1110 <published>2012-08-14T17:36:28Z</published> |
|
|
|
1111 <id>tag:ncatlab.org,2012-08-14:nLab,Doug+Ravenel</id> |
|
|
|
1112 <author> |
|
|
|
1113 <name>Urs Schreiber</name> |
|
|
|
1114 </author> |
|
|
|
1115 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Doug+Ravenel"> |
|
|
|
1116 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
1117 <ul> |
|
|
|
1118 <li> |
|
|
|
1119 <p><a href='http://www.math.rochester.edu/people/faculty/doug/'>webpage</a></p> |
|
|
|
1120 </li> |
|
|
|
1121 |
|
|
|
1122 <li> |
|
|
|
1123 <p><a class='existingWikiWord' href='/nlab/show/Michael+Hopkins'>Michael Hopkins</a>, <em>The mathematical work of Douglas C. Ravenel</em>, Homology Homotopy Appl. Volume 10, Number 3 (2008), 1-13 (<a href='https://projecteuclid.org/euclid.hha/1251832464'>euclid:hha/1251832464</a>)</p> |
|
|
|
1124 </li> |
|
|
|
1125 </ul> |
|
|
|
1126 |
|
|
|
1127 <h2 id='selected_writings'>Selected writings</h2> |
|
|
|
1128 |
|
|
|
1129 <p>On the <a class='existingWikiWord' href='/nlab/show/Hopf+algebra'>Hopf ring</a> of <a class='existingWikiWord' href='/nlab/show/MU'>MU</a>:</p> |
|
|
|
1130 |
|
|
|
1131 <ul> |
|
|
|
1132 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <a class='existingWikiWord' href='/nlab/show/W.+Stephen+Wilson'>W. Stephen Wilson</a>, <em>The Hopf ring for complex cobordism</em>, Bull. Amer. Math. Soc. 80 (6) 1185 - 1189, November 1974 (<a href='https://doi.org/10.1016/0022-4049(77)90070-6'>doi:10.1016/0022-4049(77)90070-6</a>, <a href='https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-80/issue-6/The-Hopf-ring-for-complex-cobordism/bams/1183536024.full?tab=ArticleLink'>euclid</a>, <a href='https://people.math.rochester.edu/faculty/doug/mypapers/hopfring.pdf'>pdf</a>)</li> |
|
|
|
1133 </ul> |
|
|
|
1134 |
|
|
|
1135 <p>On the <a class='existingWikiWord' href='/nlab/show/Adams%E2%80%93Novikov+spectral+sequence'>Adams-Novikov spectral sequence</a>:</p> |
|
|
|
1136 |
|
|
|
1137 <ul> |
|
|
|
1138 <li id='Ravenel78'><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>A Novice’s guide to the Adams-Novikov spectral sequence</em>, in: <a class='existingWikiWord' href='/nlab/show/Michael+Barratt'>Michael Barratt</a>, <a class='existingWikiWord' href='/nlab/show/Mark+Mahowald'>Mark Mahowald</a> (eds.) <em>Geometric Applications of Homotopy Theory II</em>. Lecture Notes in Mathematics, vol 658, Springer 1978 (<a href='https://doi.org/10.1007/BFb0068728'>doi:10.1007/BFb0068728</a>, <a href='https://people.math.rochester.edu/faculty/doug/mypapers/Novice.pdf'>pdf</a>)</li> |
|
|
|
1139 </ul> |
|
|
|
1140 |
|
|
|
1141 <p>On <a class='existingWikiWord' href='/nlab/show/chromatic+homotopy+theory'>chromatic homotopy theory</a> and introducing <a class='existingWikiWord' href='/nlab/show/Ravenel%27s+spectrum'>Ravenel's spectra</a> and <a class='existingWikiWord' href='/nlab/show/Ravenel%27s+conjectures'>Ravenel's conjectures</a>:</p> |
|
|
|
1142 |
|
|
|
1143 <ul> |
|
|
|
1144 <li id='Ravenel84'><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>Localization with Respect to Certain Periodic Homology Theories</em>, American Journal of Mathematics Vol. 106, No. 2 (Apr., 1984), pp. 351-414 (<a href='https://doi.org/10.2307/2374308'>doi:10.2307/2374308</a>, <a href='https://www.jstor.org/stable/2374308'>jstor:2374308</a>)</li> |
|
|
|
1145 </ul> |
|
|
|
1146 |
|
|
|
1147 <p>On <a class='existingWikiWord' href='/nlab/show/homotopy+groups+of+spheres'>stable homotopy groups of spheres</a> and <a class='existingWikiWord' href='/nlab/show/chromatic+homotopy+theory'>chromatic homotopy theory</a>:</p> |
|
|
|
1148 |
|
|
|
1149 <ul> |
|
|
|
1150 <li id='MahowaldRavenel87'><a class='existingWikiWord' href='/nlab/show/Mark+Mahowald'>Mark Mahowald</a>, <a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Doug Ravenel</a>, <em>Towards a Global Understanding of the Homotopy Groups of Spheres</em>, in: <a class='existingWikiWord' href='/nlab/show/Samuel+Gitler'>Samuel Gitler</a> (ed.): <em>The Lefschetz Centennial Conference: Proceedings on Algebraic Topology II</em>, Contemporary Mathematics volume 58, AMS 1987 (<a href='https://bookstore.ams.org/conm-58-2'>ISBN:978-0-8218-5063-3</a>, <a href='http://www.math.rochester.edu/people/faculty/doug/mypapers/global.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/MahowaldRavenelHomotopyGroupsOfSpheres.pdf' title='pdf'>pdf</a>)</li> |
|
|
|
1151 </ul> |
|
|
|
1152 |
|
|
|
1153 <p>On <a class='existingWikiWord' href='/nlab/show/elliptic+genus'>elliptic genera</a>:</p> |
|
|
|
1154 |
|
|
|
1155 <ul> |
|
|
|
1156 <li id='LandweberRavenelStong93'><a class='existingWikiWord' href='/nlab/show/Peter+Landweber'>Peter Landweber</a>, <a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <a class='existingWikiWord' href='/nlab/show/Robert+Stong'>Robert Stong</a>, <em>Periodic cohomology theories defined by elliptic curves</em>, in <a class='existingWikiWord' href='/nlab/show/Haynes+Miller'>Haynes Miller</a> et al (eds.), <em>The Cech centennial: A conference on homotopy theory</em>, June 1993, AMS (1995) (<a href='http://www.math.sciences.univ-nantes.fr/~hossein/GdT-Elliptique/Landweber-Ravenel-Stong.pdf'>pdf</a>)</li> |
|
|
|
1157 </ul> |
|
|
|
1158 |
|
|
|
1159 <p>On <a class='existingWikiWord' href='/nlab/show/chromatic+homotopy+theory'>chromatic homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/MU'>complex cobordism cohomology</a> and <a class='existingWikiWord' href='/nlab/show/homotopy+groups+of+spheres'>stable homotopy groups of spheres</a>,:</p> |
|
|
|
1160 |
|
|
|
1161 <ul> |
|
|
|
1162 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Doug Ravenel</a>, <em><a class='existingWikiWord' href='/nlab/show/Complex+cobordism+and+stable+homotopy+groups+of+spheres'>Complex cobordism and stable homotopy groups of spheres</a></em>, Academic Press Orland (1986) reprinted as: AMS Chelsea Publishing, Volume 347, 2004 (<a href='https://bookstore.ams.org/chel-347-h'>ISBN:978-0-8218-2967-7</a>, <a href='http://www.math.rochester.edu/people/faculty/doug/mu.html'>webpage</a>, <a href='https://web.math.rochester.edu/people/faculty/doug/mybooks/ravenel.pdf'>pdf</a>)</li> |
|
|
|
1163 </ul> |
|
|
|
1164 |
|
|
|
1165 <p>On <a class='existingWikiWord' href='/nlab/show/iterated+loop+space'>iterated loop spaces</a> of <a class='existingWikiWord' href='/nlab/show/sphere'>spheres</a> and <a class='existingWikiWord' href='/nlab/show/stable+splitting+of+mapping+spaces'>stable splitting of mapping spaces</a>:</p> |
|
|
|
1166 |
|
|
|
1167 <ul> |
|
|
|
1168 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>What we still don’t understand about loop spaces of spheres</em>, Contemporary Mathematics 1998 (<a href='https://people.math.rochester.edu/faculty/doug/mypapers/loop.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/Ravenel_LoopSpacesOfSpheres.pdf' title='pdf'>pdf</a>)</li> |
|
|
|
1169 </ul> |
|
|
|
1170 |
|
|
|
1171 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p> |
|
|
|
1172 |
|
|
|
1173 <p> |
|
|
|
1174 </p> </div> |
|
|
|
1175 </content> |
|
|
|
1176 </entry> |
|
|
|
1177 <entry> |
|
|
|
1178 <title type="html">stable splitting of mapping spaces</title> |
|
|
|
1179 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/stable+splitting+of+mapping+spaces"/> |
|
|
|
1180 <updated>2021-07-02T08:30:06Z</updated> |
|
|
|
1181 <published>2018-10-28T12:06:36Z</published> |
|
|
|
1182 <id>tag:ncatlab.org,2018-10-28:nLab,stable+splitting+of+mapping+spaces</id> |
|
|
|
1183 <author> |
|
|
|
1184 <name>Urs Schreiber</name> |
|
|
|
1185 </author> |
|
|
|
1186 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/stable+splitting+of+mapping+spaces"> |
|
|
|
1187 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
1188 <div class='rightHandSide'> |
|
|
|
1189 <div class='toc clickDown' tabindex='0'> |
|
|
|
1190 <h3 id='context'>Context</h3> |
|
|
|
1191 |
|
|
|
1192 <h4 id='stable_homotopy_theory'>Stable Homotopy theory</h4> |
|
|
|
1193 |
|
|
|
1194 <div class='hide'> |
|
|
|
1195 <p><strong><a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable homotopy theory</a></strong></p> |
|
|
|
1196 |
|
|
|
1197 <ul> |
|
|
|
1198 <li><a class='existingWikiWord' href='/nlab/show/homological+algebra'>homological algebra</a>, <a class='existingWikiWord' href='/nlab/show/higher+algebra'>higher algebra</a></li> |
|
|
|
1199 </ul> |
|
|
|
1200 |
|
|
|
1201 <p><em><a class='existingWikiWord' href='/nlab/show/Introduction+to+Stable+Homotopy+Theory'>Introduction</a></em></p> |
|
|
|
1202 |
|
|
|
1203 <h1 id='ingredients'>Ingredients</h1> |
|
|
|
1204 |
|
|
|
1205 <ul> |
|
|
|
1206 <li><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a></li> |
|
|
|
1207 </ul> |
|
|
|
1208 |
|
|
|
1209 <h1 id='contents'>Contents</h1> |
|
|
|
1210 |
|
|
|
1211 <ul> |
|
|
|
1212 <li> |
|
|
|
1213 <p><a class='existingWikiWord' href='/nlab/show/loop+space+object'>loop space object</a></p> |
|
|
|
1214 </li> |
|
|
|
1215 |
|
|
|
1216 <li> |
|
|
|
1217 <p><a class='existingWikiWord' href='/nlab/show/suspension+object'>suspension object</a></p> |
|
|
|
1218 </li> |
|
|
|
1219 |
|
|
|
1220 <li> |
|
|
|
1221 <p><a class='existingWikiWord' href='/nlab/show/looping'>looping and delooping</a></p> |
|
|
|
1222 </li> |
|
|
|
1223 |
|
|
|
1224 <li> |
|
|
|
1225 <p><a class='existingWikiWord' href='/nlab/show/stable+%28infinity%2C1%29-category'>stable (∞,1)-category</a></p> |
|
|
|
1226 |
|
|
|
1227 <ul> |
|
|
|
1228 <li> |
|
|
|
1229 <p><a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a></p> |
|
|
|
1230 |
|
|
|
1231 <ul> |
|
|
|
1232 <li><a class='existingWikiWord' href='/nlab/show/spectrum+object'>spectrum object</a></li> |
|
|
|
1233 </ul> |
|
|
|
1234 </li> |
|
|
|
1235 |
|
|
|
1236 <li> |
|
|
|
1237 <p><a class='existingWikiWord' href='/nlab/show/stable+derivator'>stable derivator</a></p> |
|
|
|
1238 </li> |
|
|
|
1239 |
|
|
|
1240 <li> |
|
|
|
1241 <p><a class='existingWikiWord' href='/nlab/show/triangulated+category'>triangulated category</a></p> |
|
|
|
1242 </li> |
|
|
|
1243 </ul> |
|
|
|
1244 </li> |
|
|
|
1245 |
|
|
|
1246 <li> |
|
|
|
1247 <p><a class='existingWikiWord' href='/nlab/show/stable+%28infinity%2C1%29-category+of+spectra'>stable (∞,1)-category of spectra</a></p> |
|
|
|
1248 |
|
|
|
1249 <ul> |
|
|
|
1250 <li> |
|
|
|
1251 <p><a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></p> |
|
|
|
1252 </li> |
|
|
|
1253 |
|
|
|
1254 <li> |
|
|
|
1255 <p><a class='existingWikiWord' href='/nlab/show/stable+homotopy+category'>stable homotopy category</a></p> |
|
|
|
1256 </li> |
|
|
|
1257 </ul> |
|
|
|
1258 </li> |
|
|
|
1259 |
|
|
|
1260 <li> |
|
|
|
1261 <p><a class='existingWikiWord' href='/nlab/show/smash+product+of+spectra'>smash product of spectra</a></p> |
|
|
|
1262 |
|
|
|
1263 <ul> |
|
|
|
1264 <li> |
|
|
|
1265 <p><a class='existingWikiWord' href='/nlab/show/symmetric+smash+product+of+spectra'>symmetric smash product of spectra</a></p> |
|
|
|
1266 </li> |
|
|
|
1267 |
|
|
|
1268 <li> |
|
|
|
1269 <p><a class='existingWikiWord' href='/nlab/show/Spanier-Whitehead+duality'>Spanier-Whitehead duality</a></p> |
|
|
|
1270 </li> |
|
|
|
1271 |
|
|
|
1272 <li> |
|
|
|
1273 <p><a class='existingWikiWord' href='/nlab/show/A-infinity-ring'>A-∞ ring</a></p> |
|
|
|
1274 </li> |
|
|
|
1275 |
|
|
|
1276 <li> |
|
|
|
1277 <p><a class='existingWikiWord' href='/nlab/show/E-infinity-ring'>E-∞ ring</a></p> |
|
|
|
1278 </li> |
|
|
|
1279 </ul> |
|
|
|
1280 </li> |
|
|
|
1281 </ul> |
|
|
|
1282 <div> |
|
|
|
1283 <p> |
|
|
|
1284 <a href='/nlab/edit/stable+homotopy+theory+-+contents'>Edit this sidebar</a> |
|
|
|
1285 </p> |
|
|
|
1286 </div></div> |
|
|
|
1287 |
|
|
|
1288 <h4 id='goodwillie_calculus'>Goodwillie calculus</h4> |
|
|
|
1289 |
|
|
|
1290 <div class='hide'> |
|
|
|
1291 <p><strong><a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a></strong> – approximation of <a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theories</a> by <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable homotopy theories</a></p> |
|
|
|
1292 |
|
|
|
1293 <ul> |
|
|
|
1294 <li> |
|
|
|
1295 <p><a class='existingWikiWord' href='/nlab/show/Goodwillie-differentiable+%28infinity%2C1%29-category'>Goodwillie-differentiable (∞,1)-category</a></p> |
|
|
|
1296 </li> |
|
|
|
1297 |
|
|
|
1298 <li> |
|
|
|
1299 <p><a class='existingWikiWord' href='/nlab/show/excisive+%28%E2%88%9E%2C1%29-functor'>excisive (∞,1)-functor</a></p> |
|
|
|
1300 |
|
|
|
1301 <ul> |
|
|
|
1302 <li> |
|
|
|
1303 <p><a class='existingWikiWord' href='/nlab/show/spectrum+object'>spectrum object</a>, <a class='existingWikiWord' href='/nlab/show/parametrized+spectrum'>parameterized spectrum</a>,</p> |
|
|
|
1304 </li> |
|
|
|
1305 |
|
|
|
1306 <li> |
|
|
|
1307 <p><a class='existingWikiWord' href='/nlab/show/tangent+%28infinity%2C1%29-category'>tangent (∞,1)-category</a>, <a class='existingWikiWord' href='/nlab/show/tangent+%28infinity%2C1%29-category'>tangent (∞,1)-topos</a></p> |
|
|
|
1308 </li> |
|
|
|
1309 </ul> |
|
|
|
1310 </li> |
|
|
|
1311 |
|
|
|
1312 <li> |
|
|
|
1313 <p><a class='existingWikiWord' href='/nlab/show/n-excisive+%28%E2%88%9E%2C1%29-functor'>n-excisive (∞,1)-functor</a></p> |
|
|
|
1314 |
|
|
|
1315 <ul> |
|
|
|
1316 <li> |
|
|
|
1317 <p><a class='existingWikiWord' href='/nlab/show/jet+%28infinity%2C1%29-category'>jet (∞,1)-category</a></p> |
|
|
|
1318 </li> |
|
|
|
1319 |
|
|
|
1320 <li> |
|
|
|
1321 <p><a class='existingWikiWord' href='/nlab/show/polynomial+%28%E2%88%9E%2C1%29-functor'>polynomial (∞,1)-functor</a>, <a class='existingWikiWord' href='/nlab/show/n-reduced+%28%E2%88%9E%2C1%29-functor'>n-reduced (∞,1)-functor</a>, <a class='existingWikiWord' href='/nlab/show/n-homogeneous+%28%E2%88%9E%2C1%29-functor'>n-homogeneous (∞,1)-functor</a></p> |
|
|
|
1322 </li> |
|
|
|
1323 </ul> |
|
|
|
1324 </li> |
|
|
|
1325 |
|
|
|
1326 <li> |
|
|
|
1327 <p><a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a></p> |
|
|
|
1328 |
|
|
|
1329 <ul> |
|
|
|
1330 <li> |
|
|
|
1331 <p><a class='existingWikiWord' href='/nlab/show/analytic+%28%E2%88%9E%2C1%29-functor'>analytic (∞,1)-functor</a></p> |
|
|
|
1332 </li> |
|
|
|
1333 |
|
|
|
1334 <li> |
|
|
|
1335 <p><a class='existingWikiWord' href='/nlab/show/Goodwillie+spectral+sequence'>Goodwillie spectral sequence</a></p> |
|
|
|
1336 </li> |
|
|
|
1337 </ul> |
|
|
|
1338 </li> |
|
|
|
1339 </ul> |
|
|
|
1340 </div> |
|
|
|
1341 |
|
|
|
1342 <h4 id='mapping_space'>Mapping space</h4> |
|
|
|
1343 |
|
|
|
1344 <div class='hide'> |
|
|
|
1345 <p><strong><a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping space</a></strong></p> |
|
|
|
1346 |
|
|
|
1347 <h3 id='general_abstract'>General abstract</h3> |
|
|
|
1348 |
|
|
|
1349 <ul> |
|
|
|
1350 <li> |
|
|
|
1351 <p><a class='existingWikiWord' href='/nlab/show/hom-set'>hom-set</a>, <a class='existingWikiWord' href='/nlab/show/hom-object'>hom-object</a>, <a class='existingWikiWord' href='/nlab/show/internal+hom'>internal hom</a>, <a class='existingWikiWord' href='/nlab/show/exponential+object'>exponential object</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>derived hom-space</a></p> |
|
|
|
1352 </li> |
|
|
|
1353 |
|
|
|
1354 <li> |
|
|
|
1355 <p><a class='existingWikiWord' href='/nlab/show/loop+space+object'>loop space object</a>, <a class='existingWikiWord' href='/nlab/show/free+loop+space+object'>free loop space object</a>, <a class='existingWikiWord' href='/nlab/show/derived+loop+space'>derived loop space</a></p> |
|
|
|
1356 </li> |
|
|
|
1357 </ul> |
|
|
|
1358 |
|
|
|
1359 <h3 id='topology'>Topology</h3> |
|
|
|
1360 |
|
|
|
1361 <ul> |
|
|
|
1362 <li> |
|
|
|
1363 <p><a class='existingWikiWord' href='/nlab/show/topology+of+mapping+spaces'>topology of mapping spaces</a></p> |
|
|
|
1364 |
|
|
|
1365 <ul> |
|
|
|
1366 <li><a class='existingWikiWord' href='/nlab/show/compact-open+topology'>compact-open topology</a></li> |
|
|
|
1367 </ul> |
|
|
|
1368 </li> |
|
|
|
1369 |
|
|
|
1370 <li> |
|
|
|
1371 <p><a class='existingWikiWord' href='/nlab/show/evaluation+fibration+of+mapping+spaces'>evaluation fibration of mapping spaces</a></p> |
|
|
|
1372 </li> |
|
|
|
1373 |
|
|
|
1374 <li> |
|
|
|
1375 <p><a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a>, <a class='existingWikiWord' href='/nlab/show/free+loop+space'>free loop space</a></p> |
|
|
|
1376 </li> |
|
|
|
1377 </ul> |
|
|
|
1378 |
|
|
|
1379 <h3 id='differential_topology'>Differential topology</h3> |
|
|
|
1380 |
|
|
|
1381 <ul> |
|
|
|
1382 <li> |
|
|
|
1383 <p><a class='existingWikiWord' href='/nlab/show/differential+topology+of+mapping+spaces'>differential topology of mapping spaces</a></p> |
|
|
|
1384 |
|
|
|
1385 <ul> |
|
|
|
1386 <li><a class='existingWikiWord' href='/nlab/show/C-infinity+topology'>C-k topology</a></li> |
|
|
|
1387 </ul> |
|
|
|
1388 </li> |
|
|
|
1389 |
|
|
|
1390 <li> |
|
|
|
1391 <p><a class='existingWikiWord' href='/nlab/show/manifold+structure+of+mapping+spaces'>manifold structure of mapping spaces</a></p> |
|
|
|
1392 |
|
|
|
1393 <ul> |
|
|
|
1394 <li><a class='existingWikiWord' href='/nlab/show/tangent+spaces+of+mapping+spaces'>tangent spaces of mapping spaces</a></li> |
|
|
|
1395 </ul> |
|
|
|
1396 </li> |
|
|
|
1397 |
|
|
|
1398 <li> |
|
|
|
1399 <p><a class='existingWikiWord' href='/nlab/show/smooth+loop+space'>smooth loop space</a></p> |
|
|
|
1400 </li> |
|
|
|
1401 </ul> |
|
|
|
1402 |
|
|
|
1403 <h3 id='stable_homotopy_theory_2'>Stable homotopy theory</h3> |
|
|
|
1404 |
|
|
|
1405 <ul> |
|
|
|
1406 <li><a class='existingWikiWord' href='/nlab/show/function+spectrum'>mapping spectrum</a></li> |
|
|
|
1407 </ul> |
|
|
|
1408 <div> |
|
|
|
1409 <p> |
|
|
|
1410 <a href='/nlab/edit/mapping+space+-+contents'>Edit this sidebar</a> |
|
|
|
1411 </p> |
|
|
|
1412 </div></div> |
|
|
|
1413 </div> |
|
|
|
1414 </div> |
|
|
|
1415 |
|
|
|
1416 <h1 id='contents_2'>Contents</h1> |
|
|
|
1417 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#Definition'>Definition</a></li><li><a href='#Statements'>Statements</a><ul><li><a href='#prelude_equivalence_to_the_infinite_configuration_space'>Prelude: Equivalence to the infinite configuration space</a></li><li><a href='#StableSplittings'>Stable splitting of mapping spaces</a></li><li><a href='#InTermsOfGoodwillieTowers'>In terms of Goodwillie-Taylor towers</a></li><li><a href='#lax_closed_structure_on_'>Lax closed structure on <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math></a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> |
|
|
|
1418 <h2 id='idea'>Idea</h2> |
|
|
|
1419 |
|
|
|
1420 <p>The <a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a>/<a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectrum</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Maps</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\Sigma^\infty Maps(X,A)</annotation></semantics></math> of <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping spaces</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Maps</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Maps(X,A)</annotation></semantics></math> between suitable <a class='existingWikiWord' href='/nlab/show/CW+complex'>CW-complexes</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>,</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>X, A</annotation></semantics></math> happens to decompose as a <a class='existingWikiWord' href='/nlab/show/direct+sum'>direct sum</a> of <a class='existingWikiWord' href='/nlab/show/spectrum'>spectra</a> (a <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge sum</a>) in a useful way, related to the expression of the <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie derivatives</a> of the functor <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Maps</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Maps(X,-)</annotation></semantics></math> and often expressible in terms of the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>.</p> |
|
|
|
1421 |
|
|
|
1422 <h2 id='Definition'>Definition</h2> |
|
|
|
1423 |
|
|
|
1424 <p>The stable splitting of mapping spaces discussed <a href='#StableSplittings'>below</a> have summands given by <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces of points</a>, or generalizations thereof. To be self-contained, we recall the relevant definitions here.</p> |
|
|
|
1425 |
|
|
|
1426 <p>The following Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a> is not the most general definition of <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces of points</a> that one may consider in this context, instead it is streamlined to certain applications. See Remark <a class='maruku-ref' href='#ComparisonToNotationInLiterature'>1</a> below for comparison of notation used here to notation used elsewhere.</p> |
|
|
|
1427 |
|
|
|
1428 <div class='num_defn' id='ConfigurationSpacesOfnPoints'> |
|
|
|
1429 <h6 id='definition_2'>Definition</h6> |
|
|
|
1430 |
|
|
|
1431 <p><strong>(<a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces of points</a>)</strong></p> |
|
|
|
1432 |
|
|
|
1433 <p>Let <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> be a <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, possibly with <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a>.</p> |
|
|
|
1434 |
|
|
|
1435 <p>For <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, the <em><strong>configuration space of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> distinguishable points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> disappearing at the boundary</em> is the <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a></p> |
|
|
|
1436 <div class='maruku-equation' id='eq:DistinguishableConfigurationSpaceJustForX'><span class='maruku-eq-number'>(1)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mi mathvariant='normal'>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1437 |
|
|
|
1438 \mathrm{Conf}^{ord}_{n}(X) |
|
|
|
1439 \;\coloneqq\; |
|
|
|
1440 \big( |
|
|
|
1441 X^n \setminus \mathbf{\Delta}_X^n |
|
|
|
1442 \big) |
|
|
|
1443 / \partial(X^n) |
|
|
|
1444 |
|
|
|
1445 </annotation></semantics></math></div> |
|
|
|
1446 <p>which is the <a class='existingWikiWord' href='/nlab/show/complement'>complement</a> of the <a class='existingWikiWord' href='/nlab/show/fat+diagonal'>fat diagonal</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo>≔</mo><mo stretchy='false'>{</mo><mo stretchy='false'>(</mo><msup><mi>x</mi> <mi>i</mi></msup><mo stretchy='false'>)</mo><mo>∈</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>|</mo><munder><mo>∃</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></munder><mo stretchy='false'>(</mo><msup><mi>x</mi> <mi>i</mi></msup><mo>=</mo><msup><mi>x</mi> <mi>j</mi></msup><mo stretchy='false'>)</mo><mo stretchy='false'>}</mo></mrow><annotation encoding='application/x-tex'>\mathbf{\Delta}_X^n \coloneqq \{(x^i) \in X^n | \underset{i,j}{\exists} (x^i = x^j) \}</annotation></semantics></math> inside the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/product+topological+space'>product space</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> with itself, followed by <a class='existingWikiWord' href='/nlab/show/quotient+space'>collapsing</a> any configurations with elements on the <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> to a common <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>base point</a>.</p> |
|
|
|
1447 |
|
|
|
1448 <p>Then the <em><strong>configuration space of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> in-distinguishable points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is the further <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient topological space</a></em></p> |
|
|
|
1449 <div class='maruku-equation' id='eq:ConfigurationSpaceJustForX'><span class='maruku-eq-number'>(2)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>Σ</mi> <mi>n</mi></msub><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1450 |
|
|
|
1451 \mathrm{Conf}_{n}(X) |
|
|
|
1452 \;\coloneqq\; |
|
|
|
1453 Conf_n^{ord}(X)/\Sigma_n |
|
|
|
1454 \;=\; |
|
|
|
1455 \Big( |
|
|
|
1456 \big( |
|
|
|
1457 X^n \setminus \mathbf{\Delta}_X^n |
|
|
|
1458 \big) |
|
|
|
1459 / \partial(X^n) |
|
|
|
1460 \Big) |
|
|
|
1461 /\Sigma(n) |
|
|
|
1462 \,, |
|
|
|
1463 |
|
|
|
1464 </annotation></semantics></math></div> |
|
|
|
1465 <p>where <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\Sigma(n)</annotation></semantics></math> denotes the evident <a class='existingWikiWord' href='/nlab/show/action'>action</a> of the <a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a> by <a class='existingWikiWord' href='/nlab/show/permutation'>permutation</a> of factors of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> inside <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>X</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>X^n</annotation></semantics></math>.</p> |
|
|
|
1466 |
|
|
|
1467 <p>More generally, let <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> be another <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, possibly with <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a>. For <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math>, the <em><strong>configuration space of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> vanishing at the boundary and distinct as points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></em> is the <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a></p> |
|
|
|
1468 <div class='maruku-equation' id='eq:ConfigurationSpaceWithXAndY'><span class='maruku-eq-number'>(3)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1469 |
|
|
|
1470 \mathrm{Conf}_{n}(X,Y) |
|
|
|
1471 \;\coloneqq\; |
|
|
|
1472 \Big( |
|
|
|
1473 \big( |
|
|
|
1474 ( |
|
|
|
1475 X^n \setminus \mathbf{\Delta}_X^n |
|
|
|
1476 ) |
|
|
|
1477 \times |
|
|
|
1478 Y^n |
|
|
|
1479 \big) |
|
|
|
1480 / \partial(X^n \times Y^n) |
|
|
|
1481 \Big) |
|
|
|
1482 /\Sigma(n) |
|
|
|
1483 |
|
|
|
1484 </annotation></semantics></math></div> |
|
|
|
1485 <p>where now <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\Sigma(n)</annotation></semantics></math> denotes the evident <a class='existingWikiWord' href='/nlab/show/action'>action</a> of the <a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a> by <a class='existingWikiWord' href='/nlab/show/permutation'>permutation</a> of factors of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> inside <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>X</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo>≃</mo><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><msup><mo stretchy='false'>)</mo> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>X^n \times Y^n \simeq (X \times Y)^n</annotation></semantics></math>.</p> |
|
|
|
1486 |
|
|
|
1487 <p>This more general definition reduces to the previous case for <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo>=</mo><mo>*</mo><mo>≔</mo><msup><mi>ℝ</mi> <mn>0</mn></msup></mrow><annotation encoding='application/x-tex'>Y = \ast \coloneqq \mathbb{R}^0</annotation></semantics></math> being the point:</p> |
|
|
|
1488 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mo>*</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1489 \mathrm{Conf}_n(X) |
|
|
|
1490 \;=\; |
|
|
|
1491 \mathrm{Conf}_n(X,\ast) |
|
|
|
1492 \,. |
|
|
|
1493 |
|
|
|
1494 </annotation></semantics></math></div> |
|
|
|
1495 <p>Finally the <em><strong>configuration space of an arbitrary number of points</strong> in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>X \times Y</annotation></semantics></math> vanishing at the boundary and distinct already as points of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math></em> is the <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient topological space</a> of the <a class='existingWikiWord' href='/nlab/show/disjoint+union+topological+space'>disjoint union space</a></p> |
|
|
|
1496 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Conf</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mrow><mo>(</mo><munder><mo>⊔</mo><mrow><mi>n</mi><mo>∈</mo><mi>𝕟</mi></mrow></munder><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>k</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mo stretchy='false'>/</mo><mo>∼</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1497 Conf\left( X, Y\right) |
|
|
|
1498 \;\coloneqq\; |
|
|
|
1499 \left( |
|
|
|
1500 \underset{n \in \mathbb{n}}{\sqcup} |
|
|
|
1501 \big( |
|
|
|
1502 ( |
|
|
|
1503 X^n \setminus \mathbf{\Delta}_X^n |
|
|
|
1504 ) |
|
|
|
1505 \times |
|
|
|
1506 Y^k |
|
|
|
1507 \big) |
|
|
|
1508 /\Sigma(n) |
|
|
|
1509 \right)/\sim |
|
|
|
1510 |
|
|
|
1511 </annotation></semantics></math></div> |
|
|
|
1512 <p>by the <a class='existingWikiWord' href='/nlab/show/equivalence+relation'>equivalence relation</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∼</mo></mrow><annotation encoding='application/x-tex'>\sim</annotation></semantics></math> given by</p> |
|
|
|
1513 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>y</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mi>⋯</mi><mo>,</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>y</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>)</mo><mo>,</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>y</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mspace width='thickmathspace'></mspace><mo>∼</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>y</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mi>⋯</mi><mo>,</mo><mo stretchy='false'>(</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>y</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>⇔</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo stretchy='false'>(</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>y</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo><mo>∈</mo><mo>∂</mo><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1514 \big( |
|
|
|
1515 (x_1, y_1), \cdots, (x_{n-1}, y_{n-1}), (x_n, y_n) |
|
|
|
1516 \big) |
|
|
|
1517 \;\sim\; |
|
|
|
1518 \big( |
|
|
|
1519 (x_1, y_1), \cdots, (x_{n-1}, y_{n-1}) |
|
|
|
1520 \big) |
|
|
|
1521 \;\;\;\; \Leftrightarrow |
|
|
|
1522 \;\;\;\; (x_n, y_n) \in \partial (X \times Y) |
|
|
|
1523 \,. |
|
|
|
1524 |
|
|
|
1525 </annotation></semantics></math></div> |
|
|
|
1526 <p>This is naturally a <a class='existingWikiWord' href='/nlab/show/filtered+topological+space'>filtered topological space</a> with filter stages</p> |
|
|
|
1527 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mrow><mo>≤</mo><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mrow><mo>(</mo><munder><mo>⊔</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mi>⋯</mi><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>k</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>k</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>k</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mo stretchy='false'>/</mo><mo>∼</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1528 Conf_{\leq n}\left( X, Y\right) |
|
|
|
1529 \;\coloneqq\; |
|
|
|
1530 \left( |
|
|
|
1531 \underset{k \in \{1, \cdots, n\}}{\sqcup} |
|
|
|
1532 \big( |
|
|
|
1533 ( |
|
|
|
1534 X^k \setminus \mathbf{\Delta}_X^k |
|
|
|
1535 ) |
|
|
|
1536 \times |
|
|
|
1537 Y^k |
|
|
|
1538 \big) |
|
|
|
1539 /\Sigma(k) |
|
|
|
1540 \right)/\sim |
|
|
|
1541 \,. |
|
|
|
1542 |
|
|
|
1543 </annotation></semantics></math></div> |
|
|
|
1544 <p>The corresponding <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient topological spaces</a> of the filter stages reproduces the above configuration spaces of a fixed number of points:</p> |
|
|
|
1545 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msub><mi>Conf</mi> <mrow><mo>≤</mo><mi>n</mi></mrow></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>Conf</mi> <mrow><mo>≤</mo><mo stretchy='false'>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1546 Conf_n(X,Y) |
|
|
|
1547 \;\simeq\; |
|
|
|
1548 Conf_{\leq n}(X,Y) / Conf_{\leq (n-1)}(X,Y) |
|
|
|
1549 \,. |
|
|
|
1550 |
|
|
|
1551 </annotation></semantics></math></div></div> |
|
|
|
1552 |
|
|
|
1553 <div class='num_remark' id='ComparisonToNotationInLiterature'> |
|
|
|
1554 <h6 id='remark'>Remark</h6> |
|
|
|
1555 |
|
|
|
1556 <p><strong>(comparison to notation in the literature)</strong></p> |
|
|
|
1557 |
|
|
|
1558 <p>The above Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a> is less general but possibly more suggestive than what is considered for instance in <a href='#Boedigheimer87'>Bödigheimer 87</a>. Concretely, we have the following translations of notation:</p> |
|
|
|
1559 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mtext> here: </mtext></mtd> <mtd></mtd> <mtd><mrow><mtable><mtr><mtd><mtext> Segal 73,</mtext></mtd></mtr> <mtr><mtd><mtext> Snaith 74</mtext><mo>:</mo></mtd></mtr></mtable></mrow></mtd> <mtd></mtd> <mtd><mtext> Bödigheimer 87: </mtext></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><mi>Conf</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><mi>C</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>∅</mi><mo>;</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>)</mo></mrow></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>F</mi> <mi>n</mi></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><msup><mi>S</mi> <mn>0</mn></msup><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>F</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><msup><mi>S</mi> <mn>0</mn></msup><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>∅</mi><mo>;</mo><msup><mi>S</mi> <mn>0</mn></msup><mo>)</mo></mrow></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo>)</mo></mrow></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>F</mi> <mi>n</mi></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><msub><mi>F</mi> <mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msub><mi>C</mi> <mi>d</mi></msub><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>∅</mi><mo>;</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>)</mo></mrow></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>;</mo><msup><mi>S</mi> <mn>0</mn></msup><mo>)</mo></mrow></mtd></mtr> <mtr><mtd><msub><mi mathvariant='normal'>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo>=</mo></mtd> <mtd><msub><mi>D</mi> <mi>n</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>;</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>)</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
1560 \array{ |
|
|
|
1561 \text{ here: } |
|
|
|
1562 && |
|
|
|
1563 \array{ \text{ Segal 73,} \\ \text{ Snaith 74}: } |
|
|
|
1564 && |
|
|
|
1565 \text{ Bödigheimer 87: } |
|
|
|
1566 \\ |
|
|
|
1567 \\ |
|
|
|
1568 Conf(\mathbb{R}^d,Y) |
|
|
|
1569 &=& |
|
|
|
1570 C_d( Y/\partial Y ) |
|
|
|
1571 &=& |
|
|
|
1572 C( \mathbb{R}^d, \emptyset; Y ) |
|
|
|
1573 \\ |
|
|
|
1574 \mathrm{Conf}_n\left( \mathbb{R}^d \right) |
|
|
|
1575 & = & |
|
|
|
1576 F_n C_d( S^0 ) / F_{n-1} C_d( S^0 ) |
|
|
|
1577 & = & |
|
|
|
1578 D_n\left( \mathbb{R}^d, \emptyset; S^0 \right) |
|
|
|
1579 \\ |
|
|
|
1580 \mathrm{Conf}_n\left( \mathbb{R}^d, Y \right) |
|
|
|
1581 & = & |
|
|
|
1582 F_n C_d( Y/\partial Y ) / F_{n-1} C_d( Y/\partial Y ) |
|
|
|
1583 & = & |
|
|
|
1584 D_n\left( \mathbb{R}^d, \emptyset; Y/\partial Y \right) |
|
|
|
1585 \\ |
|
|
|
1586 \mathrm{Conf}_n( X ) && &=& D_n\left( X, \partial X; S^0 \right) |
|
|
|
1587 \\ |
|
|
|
1588 \mathrm{Conf}_n( X, Y ) && &=& D_n\left( X, \partial X; Y/\partial Y \right) |
|
|
|
1589 } |
|
|
|
1590 |
|
|
|
1591 </annotation></semantics></math></div> |
|
|
|
1592 <p>Notice here that when <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> happens to have <a class='existingWikiWord' href='/nlab/show/empty+space'>empty</a> <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a>, <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∂</mo><mi>Y</mi><mo>=</mo><mi>∅</mi></mrow><annotation encoding='application/x-tex'>\partial Y = \emptyset</annotation></semantics></math>, then the <a class='existingWikiWord' href='/nlab/show/pushout'>pushout</a></p> |
|
|
|
1593 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>≔</mo><mi>Y</mi><munder><mo>⊔</mo><mrow><mo>∂</mo><mi>Y</mi></mrow></munder><mo>*</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1594 Y / \partial Y \coloneqq Y \underset{\partial Y}{\sqcup} \ast |
|
|
|
1595 |
|
|
|
1596 </annotation></semantics></math></div> |
|
|
|
1597 <p>is <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> with a <a href='pointed+topological+space#ForgettingAndAdjoiningBasepoints'>disjoint basepoint attached</a>. Notably for <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo>=</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>Y =\ast</annotation></semantics></math> the <a class='existingWikiWord' href='/nlab/show/point+space'>point space</a>, we have that</p> |
|
|
|
1598 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo>*</mo><mo>=</mo><msup><mi>S</mi> <mn>0</mn></msup></mrow><annotation encoding='application/x-tex'> |
|
|
|
1599 \ast/\partial \ast = S^0 |
|
|
|
1600 |
|
|
|
1601 </annotation></semantics></math></div> |
|
|
|
1602 <p>is the <a class='existingWikiWord' href='/nlab/show/0-sphere'>0-sphere</a>.</p> |
|
|
|
1603 </div> |
|
|
|
1604 |
|
|
|
1605 <h2 id='Statements'>Statements</h2> |
|
|
|
1606 |
|
|
|
1607 <h3 id='prelude_equivalence_to_the_infinite_configuration_space'>Prelude: Equivalence to the infinite configuration space</h3> |
|
|
|
1608 |
|
|
|
1609 <p>First recall the following equivalence already before <a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a>:</p> |
|
|
|
1610 |
|
|
|
1611 <div class='num_prop' id='ScanningMapEquivalenceOverCartesianSpace'> |
|
|
|
1612 <h6 id='proposition'>Proposition</h6> |
|
|
|
1613 |
|
|
|
1614 <p>For</p> |
|
|
|
1615 |
|
|
|
1616 <ol> |
|
|
|
1617 <li> |
|
|
|
1618 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>d \in \mathbb{N}</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>d \geq 1</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/natural+number'>natural number</a> with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> denoting the <a class='existingWikiWord' href='/nlab/show/cartesian+space'>Cartesian space</a>/<a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a> of that <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a>,</p> |
|
|
|
1619 </li> |
|
|
|
1620 |
|
|
|
1621 <li> |
|
|
|
1622 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, with <a class='existingWikiWord' href='/nlab/show/inhabited+set'>non-empty</a> <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a> so that <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/connected+space'>connected</a>,</p> |
|
|
|
1623 </li> |
|
|
|
1624 </ol> |
|
|
|
1625 |
|
|
|
1626 <p>the <a class='existingWikiWord' href='/nlab/show/cohomotopy+charge+map'>scanning map</a> constitutes a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a></p> |
|
|
|
1627 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Conf</mi><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo>)</mo></mrow><mover><mo>⟶</mo><mi>scan</mi></mover><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1628 Conf\left( |
|
|
|
1629 \mathbb{R}^d, Y |
|
|
|
1630 \right) |
|
|
|
1631 \overset{scan}{\longrightarrow} |
|
|
|
1632 \Omega^d \Sigma^d (Y/\partial Y) |
|
|
|
1633 |
|
|
|
1634 </annotation></semantics></math></div> |
|
|
|
1635 <p>between</p> |
|
|
|
1636 |
|
|
|
1637 <ol> |
|
|
|
1638 <li> |
|
|
|
1639 <p>the configuration space of arbitrary points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \times Y</annotation></semantics></math> vanishing at the boundary (Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>)</p> |
|
|
|
1640 </li> |
|
|
|
1641 |
|
|
|
1642 <li> |
|
|
|
1643 <p>the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a> of the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/reduced+suspension'>reduced suspension</a> of the <a class='existingWikiWord' href='/nlab/show/quotient+space'>quotient space</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math> (regarded as a <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological space</a> with basepoint <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[\partial Y]</annotation></semantics></math>).</p> |
|
|
|
1644 </li> |
|
|
|
1645 </ol> |
|
|
|
1646 |
|
|
|
1647 <p>In particular when <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo>=</mo><msup><mi>𝔻</mi> <mi>k</mi></msup></mrow><annotation encoding='application/x-tex'>Y = \mathbb{D}^k</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/ball'>closed ball</a> of <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>k</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>k \geq 1</annotation></semantics></math> this gives a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a></p> |
|
|
|
1648 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Conf</mi><mrow><mo>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>𝔻</mi> <mi>k</mi></msup><mo>)</mo></mrow><mover><mo>⟶</mo><mi>scan</mi></mover><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>S</mi> <mrow><mi>d</mi><mo>+</mo><mi>k</mi></mrow></msup></mrow><annotation encoding='application/x-tex'> |
|
|
|
1649 Conf\left( |
|
|
|
1650 \mathbb{R}^d, \mathbb{D}^k |
|
|
|
1651 \right) |
|
|
|
1652 \overset{scan}{\longrightarrow} |
|
|
|
1653 \Omega^d S^{ d + k } |
|
|
|
1654 |
|
|
|
1655 </annotation></semantics></math></div> |
|
|
|
1656 <p>with the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/loop+space'>loop space</a> of the <a class='existingWikiWord' href='/nlab/show/sphere'>(d+k)-sphere</a>.</p> |
|
|
|
1657 </div> |
|
|
|
1658 |
|
|
|
1659 <p>(<a href='#May72'>May 72, Theorem 2.7</a>, <a href='#Segal73'>Segal 73, Theorem 3</a>)</p> |
|
|
|
1660 |
|
|
|
1661 <h3 id='StableSplittings'>Stable splitting of mapping spaces</h3> |
|
|
|
1662 |
|
|
|
1663 <div class='num_prop' id='StableSplittingOfMappingSpacesOutOfEuclideanSpace'> |
|
|
|
1664 <h6 id='proposition_2'>Proposition</h6> |
|
|
|
1665 |
|
|
|
1666 <p><strong>(<a class='existingWikiWord' href='/nlab/show/stable+splitting+of+mapping+spaces'>stable splitting of mapping spaces</a> out of <a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a>/<a class='existingWikiWord' href='/nlab/show/sphere'>n-spheres</a>)</strong></p> |
|
|
|
1667 |
|
|
|
1668 <p>For</p> |
|
|
|
1669 |
|
|
|
1670 <ol> |
|
|
|
1671 <li> |
|
|
|
1672 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>d \in \mathbb{N}</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>d \geq 1</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/natural+number'>natural number</a> with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> denoting the <a class='existingWikiWord' href='/nlab/show/cartesian+space'>Cartesian space</a>/<a class='existingWikiWord' href='/nlab/show/Euclidean+space'>Euclidean space</a> of that <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a>,</p> |
|
|
|
1673 </li> |
|
|
|
1674 |
|
|
|
1675 <li> |
|
|
|
1676 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/manifold'>manifold</a>, with <a class='existingWikiWord' href='/nlab/show/inhabited+set'>non-empty</a> <a class='existingWikiWord' href='/nlab/show/manifold+with+boundary'>boundary</a> so that <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/connected+space'>connected</a>,</p> |
|
|
|
1677 </li> |
|
|
|
1678 </ol> |
|
|
|
1679 |
|
|
|
1680 <p>there is a <a class='existingWikiWord' href='/nlab/show/stable+weak+homotopy+equivalence'>stable weak homotopy equivalence</a></p> |
|
|
|
1681 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Conf</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><munder><mo>⊕</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1682 \Sigma^\infty Conf(\mathbb{R}^d, Y) |
|
|
|
1683 \overset{\simeq}{\longrightarrow} |
|
|
|
1684 \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d, Y) |
|
|
|
1685 |
|
|
|
1686 </annotation></semantics></math></div> |
|
|
|
1687 <p>between</p> |
|
|
|
1688 |
|
|
|
1689 <ol> |
|
|
|
1690 <li> |
|
|
|
1691 <p>the <a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectrum</a> of the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration space</a> of an arbitrary number of points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \times Y</annotation></semantics></math> vanishing at the boundary and distinct already as points of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> (Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>)</p> |
|
|
|
1692 </li> |
|
|
|
1693 |
|
|
|
1694 <li> |
|
|
|
1695 <p>the <a class='existingWikiWord' href='/nlab/show/direct+sum'>direct sum</a> (hence: <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge sum</a>) of <a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectra</a> of the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration spaces</a> of a fixed number of points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \times Y</annotation></semantics></math>, vanishing at the boundary and distinct already as points in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> (also Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>).</p> |
|
|
|
1696 </li> |
|
|
|
1697 </ol> |
|
|
|
1698 |
|
|
|
1699 <p>Combined with the <a class='existingWikiWord' href='/nlab/show/stabilization'>stabilization</a> of the <a class='existingWikiWord' href='/nlab/show/cohomotopy+charge+map'>scanning map</a> <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a> from Prop. <a class='maruku-ref' href='#ScanningMapEquivalenceOverCartesianSpace'>1</a> this yields a <a class='existingWikiWord' href='/nlab/show/stable+weak+homotopy+equivalence'>stable weak homotopy equivalence</a></p> |
|
|
|
1700 <div class='maruku-equation' id='eq:StableSplittingOfMappingSpacesOutOfSphere'><span class='maruku-eq-number'>(4)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_72' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><munderover><mo>⟶</mo><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>scan</mi></mrow><mo>≃</mo></munderover><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Conf</mi><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><munder><mo>⊕</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1701 |
|
|
|
1702 Maps_{cp}(\mathbb{R}^d, \Sigma^d (Y / \partial Y)) |
|
|
|
1703 = |
|
|
|
1704 Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y)) |
|
|
|
1705 = |
|
|
|
1706 \Omega^d \Sigma^d (Y/\partial Y) |
|
|
|
1707 \underoverset{\Sigma^\infty scan}{\simeq}{\longrightarrow} |
|
|
|
1708 \Sigma^\infty Conf(\mathbb{R}^d, Y) |
|
|
|
1709 \overset{\simeq}{\longrightarrow} |
|
|
|
1710 \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d, Y) |
|
|
|
1711 |
|
|
|
1712 </annotation></semantics></math></div> |
|
|
|
1713 <p>between the latter direct sum and the <a class='existingWikiWord' href='/nlab/show/suspension+spectrum'>suspension spectrum</a> of the <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping space</a> of pointed <a class='existingWikiWord' href='/nlab/show/continuous+map'>continuous functions</a> from the <a class='existingWikiWord' href='/nlab/show/sphere'>d-sphere</a> to the <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_73' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/reduced+suspension'>reduced suspension</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_74' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y / \partial Y</annotation></semantics></math>.</p> |
|
|
|
1714 </div> |
|
|
|
1715 |
|
|
|
1716 <p>(<a href='#Snaith74'>Snaith 74, theorem 1.1</a>, <a href='#Boedigheimer87'>Bödigheimer 87, Example 2</a>)</p> |
|
|
|
1717 |
|
|
|
1718 <p>In fact by <a href='#Boedigheimer87'>Bödigheimer 87, Example 5</a> this equivalence still holds with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_75' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math> treated on the same footing as <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_76' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math>, hence with <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_77' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(\mathbb{R}^d, Y)</annotation></semantics></math> on the right replaced by <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_78' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(\mathbb{R}^d \times Y)</annotation></semantics></math> in the well-adjusted notation of Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>:</p> |
|
|
|
1719 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_79' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mo>≃</mo></mover><munder><mo>⊕</mo><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>×</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1720 Maps_{cp}(\mathbb{R}^d, \Sigma^d (Y / \partial Y)) |
|
|
|
1721 = |
|
|
|
1722 Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y)) |
|
|
|
1723 \overset{\simeq}{\longrightarrow} |
|
|
|
1724 \underset{n \in \mathbb{N}}{\oplus} \Sigma^\infty Conf_n(\mathbb{R}^d \times Y) |
|
|
|
1725 |
|
|
|
1726 </annotation></semantics></math></div> |
|
|
|
1727 <h3 id='InTermsOfGoodwillieTowers'>In terms of Goodwillie-Taylor towers</h3> |
|
|
|
1728 |
|
|
|
1729 <p>We discuss the interpretation of the above stable splitting of mapping spaces from the point of view of <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a>, following <a href='#Arone99'>Arone 99, p. 1-2</a>, <a href='#Goodwillie03'>Goodwillie 03, p. 6</a>.</p> |
|
|
|
1730 |
|
|
|
1731 <p>Observe that the <a class='existingWikiWord' href='/nlab/show/configuration+space+of+points'>configuration space of points</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_80' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(X,Y)</annotation></semantics></math> from Def. <a class='maruku-ref' href='#ConfigurationSpacesOfnPoints'>1</a>, given by the formula <a class='maruku-eqref' href='#eq:ConfigurationSpaceWithXAndY'>(3)</a></p> |
|
|
|
1732 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_81' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo stretchy='false'>)</mo><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>×</mo><msup><mi>Y</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><mo stretchy='false'>/</mo><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1733 Conf_n(X,Y) |
|
|
|
1734 \;\coloneqq\; |
|
|
|
1735 \Big( |
|
|
|
1736 \big( |
|
|
|
1737 ( |
|
|
|
1738 X^n \setminus \mathbf{\Delta}_X^n |
|
|
|
1739 ) |
|
|
|
1740 \times |
|
|
|
1741 Y^n |
|
|
|
1742 \big) |
|
|
|
1743 / \partial(X^n \times Y^n) |
|
|
|
1744 \Big) |
|
|
|
1745 /\Sigma(n) |
|
|
|
1746 |
|
|
|
1747 </annotation></semantics></math></div> |
|
|
|
1748 <p>is the <a class='existingWikiWord' href='/nlab/show/quotient+object'>quotient</a> by the <a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> of the <em><a class='existingWikiWord' href='/nlab/show/smash+product'>smash product</a></em> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_82' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mo>∧</mo><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><msup><mo stretchy='false'>)</mo> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>Conf_n(X) \wedge (Y/\partial Y)^n</annotation></semantics></math> of the plain Configuration space <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_83' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Conf_n(X)</annotation></semantics></math> <a class='maruku-eqref' href='#eq:ConfigurationSpaceJustForX'>(2)</a> (regarded as a <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological space</a> with basepoint the class of the <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_84' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo>[</mo><mo>∂</mo><mrow><mo>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo>)</mo></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>\left[\partial\left(X^n\right)\right]</annotation></semantics></math>) with the analogous <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological space</a> given by <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_85' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>, the latter in fact being (since here we do not form the <a class='existingWikiWord' href='/nlab/show/complement'>complement</a> by the <a class='existingWikiWord' href='/nlab/show/fat+diagonal'>fat diagonal</a>) an <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_86' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-fold <a class='existingWikiWord' href='/nlab/show/smash+product'>smash product</a> itself:</p> |
|
|
|
1749 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_87' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Y</mi> <mrow><msub><mo>×</mo> <mi>n</mi></msub></mrow></msup><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>Y</mi> <mrow><msub><mo>×</mo> <mi>n</mi></msub></mrow></msup><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><msup><mo stretchy='false'>)</mo> <mrow><msub><mo>∧</mo> <mi>n</mi></msub></mrow></msup><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1750 Y^{\times_n}/\partial (Y^{\times_n}) |
|
|
|
1751 \;\simeq\; |
|
|
|
1752 ( Y/\partial Y )^{\wedge_n} |
|
|
|
1753 \,. |
|
|
|
1754 |
|
|
|
1755 </annotation></semantics></math></div> |
|
|
|
1756 <p>Hence in summary:</p> |
|
|
|
1757 <div class='maruku-equation' id='eq:ConfSplitsAsSmashProduct'><span class='maruku-eq-number'>(5)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_88' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Conf</mi> <mi>n</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mrow><mo>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo>)</mo></mrow> <mrow><msub><mo>∧</mo> <mi>n</mi></msub></mrow></msup><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1758 |
|
|
|
1759 Conf_n(X, Y) |
|
|
|
1760 \;\simeq\; |
|
|
|
1761 Conf^{ord}_n(X) \wedge_{\Sigma(n)} \left( Y/\partial Y \right)^{\wedge_n} |
|
|
|
1762 \,, |
|
|
|
1763 |
|
|
|
1764 </annotation></semantics></math></div> |
|
|
|
1765 <p>where</p> |
|
|
|
1766 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_89' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mrow><mo>(</mo><msup><mi>X</mi> <mrow><msub><mo>×</mo> <mi>n</mi></msub></mrow></msup><mo>∖</mo><msubsup><mstyle mathvariant='bold'><mi>Δ</mi></mstyle> <mi>X</mi> <mi>n</mi></msubsup><mo>)</mo></mrow><mo stretchy='false'>/</mo><mo>∂</mo><mo stretchy='false'>(</mo><msup><mi>X</mi> <mi>n</mi></msup><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1767 Conf_n^{ord}(X) |
|
|
|
1768 \;\coloneqq\; |
|
|
|
1769 \left( |
|
|
|
1770 X^{\times_n} \setminus \mathbf{\Delta}_X^n |
|
|
|
1771 \right)/ \partial(X^n) |
|
|
|
1772 |
|
|
|
1773 </annotation></semantics></math></div> |
|
|
|
1774 <p>is the ordered configuration space <a class='maruku-eqref' href='#eq:DistinguishableConfigurationSpaceJustForX'>(1)</a>.</p> |
|
|
|
1775 |
|
|
|
1776 <p>This construction, regarded as a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a> from <a class='existingWikiWord' href='/nlab/show/pointed+topological+space'>pointed topological spaces</a> to <a class='existingWikiWord' href='/nlab/show/spectrum'>spectra</a></p> |
|
|
|
1777 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_90' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>Spectra</mi></mtd></mtr> <mtr><mtd><mi>Z</mi></mtd> <mtd><mo>↦</mo></mtd> <mtd><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>n</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>n</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>n</mi></msub></mrow></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
1778 \array{ |
|
|
|
1779 Top^{\ast/} |
|
|
|
1780 &\longrightarrow& |
|
|
|
1781 Spectra |
|
|
|
1782 \\ |
|
|
|
1783 Z |
|
|
|
1784 &\mapsto& |
|
|
|
1785 \Sigma^\infty Conf^{ord}_n(X) \wedge_{\Sigma(n)} Z^{\wedge_n} |
|
|
|
1786 } |
|
|
|
1787 |
|
|
|
1788 </annotation></semantics></math></div> |
|
|
|
1789 <p>is an <a class='existingWikiWord' href='/nlab/show/n-homogeneous+%28%E2%88%9E%2C1%29-functor'>n-homogeneous (∞,1)-functor</a> in the sense of <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a>, and hence the partial <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge sums</a> as <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_91' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> ranges</p> |
|
|
|
1790 <div class='maruku-equation' id='eq:IdentifyingTheGoodwillieTaylorStage'><span class='maruku-eq-number'>(6)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_92' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Z</mi><mspace width='thickmathspace'></mspace><mo>↦</mo><mspace width='thickmathspace'></mspace><munder><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mo>⋅</mo><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><mi>X</mi><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>k</mi></msub></mrow></msup></mrow><annotation encoding='application/x-tex'> |
|
|
|
1791 |
|
|
|
1792 Z |
|
|
|
1793 \;\mapsto\; |
|
|
|
1794 \underset{k \in \{1, \cdot, n\}}{\bigoplus} |
|
|
|
1795 \Sigma^\infty Conf^{ord}_k(X) \wedge_{\Sigma(k)} Z^{\wedge_k} |
|
|
|
1796 |
|
|
|
1797 </annotation></semantics></math></div> |
|
|
|
1798 <p>are <a class='existingWikiWord' href='/nlab/show/n-excisive+%28%E2%88%9E%2C1%29-functor'>n-excisive (∞,1)-functors</a>. Moreover, by the stable splitting of mapping spaces <a class='maruku-eqref' href='#eq:StableSplittingOfMappingSpacesOutOfSphere'>(4)</a> of Prop. <a class='maruku-ref' href='#StableSplittingOfMappingSpacesOutOfEuclideanSpace'>2</a>, there is a <a class='existingWikiWord' href='/nlab/show/projection'>projection</a> morphism onto the first <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_93' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math> <a class='existingWikiWord' href='/nlab/show/wedge+sum'>wedge summands</a></p> |
|
|
|
1799 <div class='maruku-equation' id='eq:ProjectionMaps'><span class='maruku-eq-number'>(7)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_94' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mi>Z</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo></mtd> <mtd><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mi>Z</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>≃</mo></mtd> <mtd><munder><mo>⊕</mo><mrow><mi>k</mi><mo>∈</mo><mi>ℕ</mi></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>k</mi></msub></mrow></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo maxsize='1.8em' minsize='1.8em'>↓</mo><msup><mrow></mrow> <mpadded width='0'><mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></mpadded></msup></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><munder><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mo>⋅</mo><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo stretchy='false'>)</mo><msub><mo>∧</mo> <mrow><mi>Σ</mi><mo stretchy='false'>(</mo><mi>k</mi><mo stretchy='false'>)</mo></mrow></msub><msup><mi>Z</mi> <mrow><msub><mo>∧</mo> <mi>k</mi></msub></mrow></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
1800 |
|
|
|
1801 \array{ |
|
|
|
1802 Maps_{cp}(\mathbb{R}^d, \Sigma^d Z) |
|
|
|
1803 &=& |
|
|
|
1804 Maps^{\ast/}( S^d, \Sigma^d Z) |
|
|
|
1805 &\simeq& |
|
|
|
1806 \underset{k \in \mathbb{N}}{\oplus} |
|
|
|
1807 \Sigma^\infty Conf^{ord}_k(\mathbb{R}^d) \wedge_{\Sigma(k)} Z^{\wedge_k} |
|
|
|
1808 \\ |
|
|
|
1809 && |
|
|
|
1810 && |
|
|
|
1811 \Big\downarrow {}^{\mathrlap{ p_n }} |
|
|
|
1812 \\ |
|
|
|
1813 && |
|
|
|
1814 && |
|
|
|
1815 \underset{k \in \{1, \cdot, n\}}{\bigoplus} |
|
|
|
1816 \Sigma^\infty Conf^{ord}_k( \mathbb{R}^d ) \wedge_{\Sigma(k)} Z^{\wedge_k} |
|
|
|
1817 } |
|
|
|
1818 |
|
|
|
1819 </annotation></semantics></math></div> |
|
|
|
1820 <p>and this is <a class='existingWikiWord' href='/nlab/show/n-connected+object+of+an+%28infinity%2C1%29-topos'>(n+1)k-connected</a> when <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_95' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Z</mi></mrow><annotation encoding='application/x-tex'>Z</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/n-connected+object+of+an+%28infinity%2C1%29-topos'>k-connected</a>.</p> |
|
|
|
1821 |
|
|
|
1822 <p>By <a class='existingWikiWord' href='/nlab/show/Goodwillie+calculus'>Goodwillie calculus</a> this means that <a class='maruku-eqref' href='#eq:IdentifyingTheGoodwillieTaylorStage'>(6)</a> are, up to <a class='existingWikiWord' href='/nlab/show/equivalence+in+an+%28infinity%2C1%29-category'>equivalence</a>, the stages</p> |
|
|
|
1823 <div class='maruku-equation' id='eq:TheGoodwillieStagesOfTheMappingSpaceFunctor'><span class='maruku-eq-number'>(8)</span><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_96' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>P</mi> <mi>n</mi></msub><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>Z</mi><mo>↦</mo><munder><mo lspace='thinmathspace' rspace='thinmathspace'>⨁</mo><mrow><mi>k</mi><mo>∈</mo><mo stretchy='false'>{</mo><mn>1</mn><mo>,</mo><mo>⋅</mo><mo>,</mo><mi>n</mi><mo stretchy='false'>}</mo></mrow></munder><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mi>k</mi> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><mi>Z</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1824 |
|
|
|
1825 P_n Maps^{\ast/}( S^d, \Sigma^d (-)) |
|
|
|
1826 \;\colon\; |
|
|
|
1827 Z \mapsto |
|
|
|
1828 \underset{k \in \{1, \cdot, n\}}{\bigoplus} |
|
|
|
1829 \Sigma^\infty Conf^{ord}_k(S^d, Z) |
|
|
|
1830 |
|
|
|
1831 </annotation></semantics></math></div> |
|
|
|
1832 <p>at <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_97' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Z</mi><mo>∈</mo><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>Z \in Top^{\ast/}</annotation></semantics></math> of the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> for the <a class='existingWikiWord' href='/nlab/show/compact-open+topology'>mapping space</a>-functor</p> |
|
|
|
1833 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_98' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Maps</mi> <mi>cp</mi></msub><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo>⟶</mo><msup><mi>Top</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1834 Maps_{cp}(\mathbb{R}^d, \Sigma^d (-)) |
|
|
|
1835 = |
|
|
|
1836 Maps^{\ast/}( S^d, \Sigma^d (-)) |
|
|
|
1837 \;\colon\; |
|
|
|
1838 Top^{\ast/} \longrightarrow Top^{\ast/} |
|
|
|
1839 \,. |
|
|
|
1840 |
|
|
|
1841 </annotation></semantics></math></div> |
|
|
|
1842 <p>Therefore the stable splitting theorem <a class='maruku-ref' href='#StableSplittingOfMappingSpacesOutOfEuclideanSpace'>2</a> may equivalently be read as expressing the mapping space functor equivalently as the <a class='existingWikiWord' href='/nlab/show/limit'>limit</a> over its <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a>.</p> |
|
|
|
1843 |
|
|
|
1844 <p>(<a href='#Arone99'>Arone 99, p. 1-2</a>, <a href='#Goodwillie03'>Goodwillie 03, p. 6</a>)</p> |
|
|
|
1845 |
|
|
|
1846 <p><math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_99' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mspace width='thinmathspace'></mspace></mrow><annotation encoding='application/x-tex'>\,</annotation></semantics></math></p> |
|
|
|
1847 |
|
|
|
1848 <h3 id='lax_closed_structure_on_'>Lax closed structure on <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_100' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math></h3> |
|
|
|
1849 |
|
|
|
1850 <p>Notice that the first stage in the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_101' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Maps</mi><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Maps(S^d, \Sigma^d(-))</annotation></semantics></math> is</p> |
|
|
|
1851 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_102' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><msub><mi>P</mi> <mn>1</mn></msub><msup><mi>Maps</mi> <mrow><mo>*</mo><mo stretchy='false'>/</mo></mrow></msup><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mtd> <mtd><mo>=</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msubsup><mi>Conf</mi> <mn>1</mn> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>,</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><munder><munder><mrow><msubsup><mi>Conf</mi> <mn>1</mn> <mi>ord</mi></msubsup><mo stretchy='false'>(</mo><msup><mi>ℝ</mi> <mi>d</mi></msup><mo stretchy='false'>)</mo></mrow><mo>⏟</mo></munder><mrow><mo>≃</mo><msup><mi>S</mi> <mn>0</mn></msup></mrow></munder><mo>∧</mo><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msup><mi>Ω</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mi>d</mi></msup><msup><mi>Σ</mi> <mn>∞</mn></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><mi>Maps</mi><mrow><mo>(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
1852 \begin{aligned} |
|
|
|
1853 P_1 Maps^{\ast/}( S^d, \Sigma^d (Y / \partial Y) ) |
|
|
|
1854 & = |
|
|
|
1855 \Sigma^\infty Conf^{ord}_1( \mathbb{R}^d , Y ) |
|
|
|
1856 \\ |
|
|
|
1857 & \simeq |
|
|
|
1858 \Sigma^\infty |
|
|
|
1859 \underset{\simeq S^0}{\underbrace{Conf^{ord}_1( \mathbb{R}^d )}} |
|
|
|
1860 \wedge (Y/\partial Y) |
|
|
|
1861 \\ |
|
|
|
1862 & \simeq |
|
|
|
1863 \Sigma^\infty (Y/\partial Y) |
|
|
|
1864 \\ |
|
|
|
1865 & \simeq |
|
|
|
1866 \Omega^d \Sigma^d \Sigma^\infty (Y/\partial Y) |
|
|
|
1867 \\ |
|
|
|
1868 & \simeq |
|
|
|
1869 Maps\left( \Sigma^\infty S^d, \Sigma^d (Y/\partial Y) \right) |
|
|
|
1870 \end{aligned} |
|
|
|
1871 |
|
|
|
1872 </annotation></semantics></math></div> |
|
|
|
1873 <p>Here in the first step we used <a class='maruku-eqref' href='#eq:TheGoodwillieStagesOfTheMappingSpaceFunctor'>(8)</a>, in the second step we used <a class='maruku-eqref' href='#eq:ConfSplitsAsSmashProduct'>(5)</a>. Under the brace we observe that space of configurations of a single point in <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_103' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> is trivially <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_104' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math> itself, which is <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a> <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_105' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup><mo>≃</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d \simeq \ast</annotation></semantics></math> and, due to <a class='existingWikiWord' href='/nlab/show/empty+set'>empty</a> <a class='existingWikiWord' href='/nlab/show/boundary'>boundary</a> of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_106' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>ℝ</mi> <mi>d</mi></msup></mrow><annotation encoding='application/x-tex'>\mathbb{R}^d</annotation></semantics></math>, contributes a <a class='existingWikiWord' href='/nlab/show/0-sphere'>0-sphere</a>-factor to the <a class='existingWikiWord' href='/nlab/show/smash+product'>smash product</a>, which disappears. In the last last two steps we trivially rewrote the result to exhibit it as a <a class='existingWikiWord' href='/nlab/show/function+spectrum'>mapping spectrum</a>.</p> |
|
|
|
1874 |
|
|
|
1875 <p>Therefore the projection <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_107' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>p_1</annotation></semantics></math> <a class='maruku-eqref' href='#eq:ProjectionMaps'>(7)</a> to the first stage of the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> is of the form</p> |
|
|
|
1876 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_108' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msup><mi>Σ</mi> <mn>∞</mn></msup><mi>Maps</mi><mrow><mo>(</mo><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mo>⟶</mo><mi>Maps</mi><mrow><mo>(</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msup><mi>S</mi> <mi>d</mi></msup><mo>,</mo><msup><mi>Σ</mi> <mn>∞</mn></msup><msup><mi>Σ</mi> <mi>d</mi></msup><mo stretchy='false'>(</mo><mi>Y</mi><mo stretchy='false'>/</mo><mo>∂</mo><mi>Y</mi><mo stretchy='false'>)</mo><mo>)</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
1877 p_1 |
|
|
|
1878 \;\colon\; |
|
|
|
1879 \Sigma^\infty Maps\left( S^d , \Sigma^d (Y /\partial Y) \right) |
|
|
|
1880 \longrightarrow |
|
|
|
1881 Maps |
|
|
|
1882 \left( |
|
|
|
1883 \Sigma^\infty S^d, \Sigma^\infty \Sigma^d (Y / \partial Y) |
|
|
|
1884 \right) |
|
|
|
1885 \,. |
|
|
|
1886 |
|
|
|
1887 </annotation></semantics></math></div> |
|
|
|
1888 <p>Since <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_109' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/monoidal+functor'>strong monoidal functor</a> (<a href='suspension+spectrum#StrongMonoidalness'>here</a>), there is a canonical comparison morphism of this form, exhibiting the induce <a class='existingWikiWord' href='/nlab/show/closed+functor'>lax closed</a>-structure on <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_110' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Σ</mi> <mn>∞</mn></msup></mrow><annotation encoding='application/x-tex'>\Sigma^\infty</annotation></semantics></math>. Probably <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_111' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>p</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>p_1</annotation></semantics></math> coincides with that canonical morphism, up to equivalence.</p> |
|
|
|
1889 |
|
|
|
1890 <blockquote> |
|
|
|
1891 <p>Does it?</p> |
|
|
|
1892 </blockquote> |
|
|
|
1893 |
|
|
|
1894 <h2 id='related_concepts'>Related concepts</h2> |
|
|
|
1895 |
|
|
|
1896 <ul> |
|
|
|
1897 <li><a class='existingWikiWord' href='/nlab/show/function+spectrum'>mapping spectrum</a></li> |
|
|
|
1898 </ul> |
|
|
|
1899 |
|
|
|
1900 <h2 id='references'>References</h2> |
|
|
|
1901 |
|
|
|
1902 <p>The theorem is originally due to</p> |
|
|
|
1903 |
|
|
|
1904 <ul> |
|
|
|
1905 <li id='Snaith74'><a class='existingWikiWord' href='/nlab/show/Victor+Snaith'>Victor Snaith</a>, <em>A stable decomposition of <math class='maruku-mathml' display='inline' id='mathml_088ef31fdc8e12cd452fffa20b013a4319559b55_112' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Ω</mi> <mi>n</mi></msup><msup><mi>S</mi> <mi>n</mi></msup><mi>X</mi></mrow><annotation encoding='application/x-tex'>\Omega^n S^n X</annotation></semantics></math></em>, Journal of the London Mathematical Society 7 (1974), 577 - 583 (<a href='https://www.maths.ed.ac.uk/~v1ranick/papers/snaiths.pdf'>pdf</a>)</li> |
|
|
|
1906 </ul> |
|
|
|
1907 |
|
|
|
1908 <p>using the homotopy equivalence before stabilization due to</p> |
|
|
|
1909 |
|
|
|
1910 <ul> |
|
|
|
1911 <li id='May72'> |
|
|
|
1912 <p><a class='existingWikiWord' href='/nlab/show/Peter+May'>Peter May</a>, <em>The geometry of iterated loop spaces</em>, Springer 1972 (<a href='https://www.math.uchicago.edu/~may/BOOKS/geom_iter.pdf'>pdf</a>)</p> |
|
|
|
1913 </li> |
|
|
|
1914 |
|
|
|
1915 <li id='Segal73'> |
|
|
|
1916 <p><a class='existingWikiWord' href='/nlab/show/Graeme+Segal'>Graeme Segal</a>, <em>Configuration-spaces and iterated loop-spaces</em>, Invent. Math. <strong>21</strong> (1973), 213–221. MR 0331377 (<a href='http://dodo.pdmi.ras.ru/~topology/books/segal.pdf'>pdf</a>)</p> |
|
|
|
1917 </li> |
|
|
|
1918 </ul> |
|
|
|
1919 |
|
|
|
1920 <p>An alternative proof is due to</p> |
|
|
|
1921 |
|
|
|
1922 <ul> |
|
|
|
1923 <li id='Cohen80'><a class='existingWikiWord' href='/nlab/show/Ralph+Cohen'>Ralph Cohen</a>, <em>Stable proof of stable splittings</em>, Math. Proc. Camb. Phil. Soc., 1980, 88, 149 (<a href='https://doi.org/10.1017/S030500410005742X'>doi:10.1017/S030500410005742X</a>, <a href='https://www.cambridge.org/core/services/aop-cambridge-core/content/view/247D9F951F8AB99000E4FF6CB2DB9EA2/S030500410005742Xa.pdf/div-class-title-stable-proofs-of-stable-splittings-div.pdf'>pdf</a>)</li> |
|
|
|
1924 </ul> |
|
|
|
1925 |
|
|
|
1926 <p>Review and generalization is due to</p> |
|
|
|
1927 |
|
|
|
1928 <ul> |
|
|
|
1929 <li id='Boedigheimer87'><a class='existingWikiWord' href='/nlab/show/Carl-Friedrich+B%C3%B6digheimer'>Carl-Friedrich Bödigheimer</a>, <em>Stable splittings of mapping spaces</em>, Algebraic topology. Springer 1987. 174-187 (<a href='http://www.math.uni-bonn.de/~cfb/PUBLICATIONS/stable-splittings-of-mapping-spaces.pdf'>pdf</a>)</li> |
|
|
|
1930 </ul> |
|
|
|
1931 |
|
|
|
1932 <p>Interpretation in terms of the <a class='existingWikiWord' href='/nlab/show/Goodwillie-Taylor+tower'>Goodwillie-Taylor tower</a> of mapping spaces is due to</p> |
|
|
|
1933 |
|
|
|
1934 <ul> |
|
|
|
1935 <li id='Arone99'> |
|
|
|
1936 <p><a class='existingWikiWord' href='/nlab/show/Gregory+Arone'>Greg Arone</a>, <em>A generalization of Snaith-type filtration</em>, Transactions of the American Mathematical Society 351.3 (1999): 1123-1150. (<a href='https://www.ams.org/journals/tran/1999-351-03/S0002-9947-99-02405-8/S0002-9947-99-02405-8.pdf'>pdf</a>)</p> |
|
|
|
1937 </li> |
|
|
|
1938 |
|
|
|
1939 <li id='Ching05'> |
|
|
|
1940 <p><a class='existingWikiWord' href='/nlab/show/Michael+Ching'>Michael Ching</a>, <em>Calculus of Functors and Configuration Spaces</em>, Conference on Pure and Applied Topology Isle of Skye, Scotland, 21-25 June, 2005 (<a href='https://www3.amherst.edu/~mching/Work/skye.pdf'>pdf</a>)</p> |
|
|
|
1941 </li> |
|
|
|
1942 |
|
|
|
1943 <li id='Goodwillie03'> |
|
|
|
1944 <p><a class='existingWikiWord' href='/nlab/show/Thomas+Goodwillie'>Thomas Goodwillie</a>, p. 6 of <em>Calculus. III. Taylor series</em>, Geom. Topol. 7 (2003), 645–711 (<a href='http://www.msp.warwick.ac.uk/gt/2003/07/p019.xhtml'>journal</a>, <a href='http://arxiv.org/abs/math/0310481'>arXiv:math/0310481</a>))</p> |
|
|
|
1945 </li> |
|
|
|
1946 </ul> |
|
|
|
1947 |
|
|
|
1948 <p>A proof via <a class='existingWikiWord' href='/nlab/show/nonabelian+Poincar%C3%A9+duality'>nonabelian Poincaré duality</a>:</p> |
|
|
|
1949 |
|
|
|
1950 <ul> |
|
|
|
1951 <li>Lauren Bandklayder, <em>Stable splitting of mapping spaces via nonabelian Poincaré duality</em> (<a href='https://arxiv.org/abs/1705.03090'>arxiv:1705.03090</a>)</li> |
|
|
|
1952 </ul> |
|
|
|
1953 |
|
|
|
1954 <p>See also:</p> |
|
|
|
1955 |
|
|
|
1956 <ul> |
|
|
|
1957 <li><a class='existingWikiWord' href='/nlab/show/Doug+Ravenel'>Douglas Ravenel</a>, <em>What we still don’t understand about loop spaces of spheres</em>, Contemporary Mathematics 1998 (<a href='https://people.math.rochester.edu/faculty/doug/mypapers/loop.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/Ravenel_LoopSpacesOfSpheres.pdf' title='pdf'>pdf</a>)</li> |
|
|
|
1958 </ul> |
|
|
|
1959 |
|
|
|
1960 <p> |
|
|
|
1961 </p> </div> |
|
|
|
1962 </content> |
|
|
|
1963 </entry> |
|
|
|
1964 <entry> |
|
|
|
1965 <title type="html">Tarmo Uustalu</title> |
|
|
|
1966 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Tarmo+Uustalu"/> |
|
|
|
1967 <updated>2021-07-02T00:18:56Z</updated> |
|
|
|
1968 <published>2021-07-01T06:30:08Z</published> |
|
|
|
1969 <id>tag:ncatlab.org,2021-07-01:nLab,Tarmo+Uustalu</id> |
|
|
|
1970 <author> |
|
|
|
1971 <name>Dmitri Pavlov</name> |
|
|
|
1972 </author> |
|
|
|
1973 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Tarmo+Uustalu"> |
|
|
|
1974 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
1975 <p>Tarmo Uustalu is a professor at the Dept. of Computer Science of Reykjavik University. He also has part-time post in the Dept. of Software Science of the Tallinn University of Technology (TUT) as a lead research scientist, taking care of the Lab for High-Assurance Software, in particular the Logic and Semantics Group.</p> |
|
|
|
1976 |
|
|
|
1977 <ul> |
|
|
|
1978 <li><a href='https://www.ioc.ee/~tarmo/'>Home page</a></li> |
|
|
|
1979 </ul> |
|
|
|
1980 |
|
|
|
1981 <p><div class='property'> category: <a class='category_link' href='/nlab/list/people'>people</a></div></p> |
|
|
|
1982 |
|
|
|
1983 <p> |
|
|
|
1984 </p> </div> |
|
|
|
1985 </content> |
|
|
|
1986 </entry> |
|
|
|
1987 <entry> |
|
|
|
1988 <title type="html">Monster group</title> |
|
|
|
1989 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Monster+group"/> |
|
|
|
1990 <updated>2021-07-01T21:40:24Z</updated> |
|
|
|
1991 <published>2010-05-19T06:28:51Z</published> |
|
|
|
1992 <id>tag:ncatlab.org,2010-05-19:nLab,Monster+group</id> |
|
|
|
1993 <author> |
|
|
|
1994 <name>Urs Schreiber</name> |
|
|
|
1995 </author> |
|
|
|
1996 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Monster+group"> |
|
|
|
1997 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
1998 <div class='rightHandSide'> |
|
|
|
1999 <div class='toc clickDown' tabindex='0'> |
|
|
|
2000 <h3 id='context'>Context</h3> |
|
|
|
2001 |
|
|
|
2002 <h4 id='exceptional_structures'>Exceptional structures</h4> |
|
|
|
2003 |
|
|
|
2004 <div class='hide'> |
|
|
|
2005 <p><strong><a class='existingWikiWord' href='/nlab/show/exceptional+structure'>exceptional structures</a></strong>, <a class='existingWikiWord' href='/nlab/show/exceptional+isomorphism'>exceptional isomorphisms</a></p> |
|
|
|
2006 |
|
|
|
2007 <h2 id='examples'>Examples</h2> |
|
|
|
2008 |
|
|
|
2009 <ul> |
|
|
|
2010 <li> |
|
|
|
2011 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>exceptional finite groups</a></p> |
|
|
|
2012 |
|
|
|
2013 <ul> |
|
|
|
2014 <li> |
|
|
|
2015 <p><a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a></p> |
|
|
|
2016 </li> |
|
|
|
2017 |
|
|
|
2018 <li> |
|
|
|
2019 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a>,</p> |
|
|
|
2020 </li> |
|
|
|
2021 |
|
|
|
2022 <li> |
|
|
|
2023 <p><a class='existingWikiWord' href='/nlab/show/Conway+group'>Conway group</a></p> |
|
|
|
2024 </li> |
|
|
|
2025 </ul> |
|
|
|
2026 </li> |
|
|
|
2027 |
|
|
|
2028 <li> |
|
|
|
2029 <p>exceptional <a class='existingWikiWord' href='/nlab/show/finite+rotation+group'>finite rotation groups</a>:</p> |
|
|
|
2030 |
|
|
|
2031 <ul> |
|
|
|
2032 <li> |
|
|
|
2033 <p><a class='existingWikiWord' href='/nlab/show/tetrahedral+group'>tetrahedral group</a></p> |
|
|
|
2034 </li> |
|
|
|
2035 |
|
|
|
2036 <li> |
|
|
|
2037 <p><a class='existingWikiWord' href='/nlab/show/octahedral+group'>octahedral group</a></p> |
|
|
|
2038 </li> |
|
|
|
2039 |
|
|
|
2040 <li> |
|
|
|
2041 <p><a class='existingWikiWord' href='/nlab/show/icosahedral+group'>icosahedral group</a></p> |
|
|
|
2042 </li> |
|
|
|
2043 </ul> |
|
|
|
2044 </li> |
|
|
|
2045 |
|
|
|
2046 <li> |
|
|
|
2047 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+group'>exceptional Lie groups</a></p> |
|
|
|
2048 |
|
|
|
2049 <ul> |
|
|
|
2050 <li> |
|
|
|
2051 <p><a class='existingWikiWord' href='/nlab/show/G2'>G2</a></p> |
|
|
|
2052 </li> |
|
|
|
2053 |
|
|
|
2054 <li> |
|
|
|
2055 <p><a class='existingWikiWord' href='/nlab/show/F4'>F4</a></p> |
|
|
|
2056 </li> |
|
|
|
2057 |
|
|
|
2058 <li> |
|
|
|
2059 <p><a class='existingWikiWord' href='/nlab/show/E6'>E6</a>, <a class='existingWikiWord' href='/nlab/show/E7'>E7</a>, <a class='existingWikiWord' href='/nlab/show/E8'>E8</a></p> |
|
|
|
2060 </li> |
|
|
|
2061 </ul> |
|
|
|
2062 |
|
|
|
2063 <p>and <a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody groups</a>:</p> |
|
|
|
2064 |
|
|
|
2065 <ul> |
|
|
|
2066 <li><a class='existingWikiWord' href='/nlab/show/E9'>E9</a>, <a class='existingWikiWord' href='/nlab/show/E10'>E10</a>, <a class='existingWikiWord' href='/nlab/show/E11'>E11</a>, …</li> |
|
|
|
2067 </ul> |
|
|
|
2068 </li> |
|
|
|
2069 |
|
|
|
2070 <li> |
|
|
|
2071 <p><a class='existingWikiWord' href='/nlab/show/Dwyer-Wilkerson+H-space'>Dwyer-Wilkerson H-space</a></p> |
|
|
|
2072 </li> |
|
|
|
2073 |
|
|
|
2074 <li> |
|
|
|
2075 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+algebra'>exceptional Lie algebras</a></p> |
|
|
|
2076 </li> |
|
|
|
2077 |
|
|
|
2078 <li> |
|
|
|
2079 <p><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>exceptional Jordan algebra</a></p> |
|
|
|
2080 |
|
|
|
2081 <ul> |
|
|
|
2082 <li><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>Albert algebra</a></li> |
|
|
|
2083 </ul> |
|
|
|
2084 </li> |
|
|
|
2085 |
|
|
|
2086 <li> |
|
|
|
2087 <p>exceptional <a class='existingWikiWord' href='/nlab/show/Jordan+superalgebra'>Jordan superalgebra</a>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>K</mi> <mn>10</mn></msub></mrow><annotation encoding='application/x-tex'>K_10</annotation></semantics></math></p> |
|
|
|
2088 </li> |
|
|
|
2089 |
|
|
|
2090 <li> |
|
|
|
2091 <p><a class='existingWikiWord' href='/nlab/show/Leech+lattice'>Leech lattice</a></p> |
|
|
|
2092 </li> |
|
|
|
2093 |
|
|
|
2094 <li> |
|
|
|
2095 <p><a class='existingWikiWord' href='/nlab/show/Cayley+plane'>Cayley plane</a></p> |
|
|
|
2096 </li> |
|
|
|
2097 </ul> |
|
|
|
2098 |
|
|
|
2099 <h2 id='interrelations'>Interrelations</h2> |
|
|
|
2100 |
|
|
|
2101 <ul> |
|
|
|
2102 <li> |
|
|
|
2103 <p><a class='existingWikiWord' href='/nlab/show/division+algebra+and+supersymmetry'>supersymmetry and division algebras</a></p> |
|
|
|
2104 </li> |
|
|
|
2105 |
|
|
|
2106 <li> |
|
|
|
2107 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+magic+square'>Freudenthal magic square</a></p> |
|
|
|
2108 </li> |
|
|
|
2109 |
|
|
|
2110 <li> |
|
|
|
2111 <p><a class='existingWikiWord' href='/nlab/show/Moonshine'>moonshine</a></p> |
|
|
|
2112 |
|
|
|
2113 <ul> |
|
|
|
2114 <li> |
|
|
|
2115 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p> |
|
|
|
2116 </li> |
|
|
|
2117 |
|
|
|
2118 <li> |
|
|
|
2119 <p><a class='existingWikiWord' href='/nlab/show/umbral+moonshine'>umbral moonshine</a></p> |
|
|
|
2120 </li> |
|
|
|
2121 |
|
|
|
2122 <li> |
|
|
|
2123 <p><a class='existingWikiWord' href='/nlab/show/O%27Nan+moonshine'>O'Nan moonshine</a></p> |
|
|
|
2124 </li> |
|
|
|
2125 </ul> |
|
|
|
2126 </li> |
|
|
|
2127 </ul> |
|
|
|
2128 |
|
|
|
2129 <h2 id='applications'>Applications</h2> |
|
|
|
2130 |
|
|
|
2131 <ul> |
|
|
|
2132 <li> |
|
|
|
2133 <p><a class='existingWikiWord' href='/nlab/show/exceptional+geometry'>exceptional geometry</a>, <a class='existingWikiWord' href='/nlab/show/exceptional+generalized+geometry'>exceptional generalized geometry</a>,</p> |
|
|
|
2134 </li> |
|
|
|
2135 |
|
|
|
2136 <li> |
|
|
|
2137 <p><a class='existingWikiWord' href='/nlab/show/exceptional+field+theory'>exceptional field theory</a></p> |
|
|
|
2138 </li> |
|
|
|
2139 </ul> |
|
|
|
2140 |
|
|
|
2141 <h2 id='philosophy'>Philosophy</h2> |
|
|
|
2142 |
|
|
|
2143 <ul> |
|
|
|
2144 <li><a class='existingWikiWord' href='/nlab/show/universal+exceptionalism'>universal exceptionalism</a></li> |
|
|
|
2145 </ul> |
|
|
|
2146 </div> |
|
|
|
2147 |
|
|
|
2148 <h4 id='group_theory'>Group Theory</h4> |
|
|
|
2149 |
|
|
|
2150 <div class='hide'> |
|
|
|
2151 <p><strong><a class='existingWikiWord' href='/nlab/show/group+theory'>group theory</a></strong></p> |
|
|
|
2152 |
|
|
|
2153 <ul> |
|
|
|
2154 <li><a class='existingWikiWord' href='/nlab/show/group'>group</a>, <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></li> |
|
|
|
2155 |
|
|
|
2156 <li><a class='existingWikiWord' href='/nlab/show/group+object'>group object</a>, <a class='existingWikiWord' href='/nlab/show/groupoid+object+in+an+%28infinity%2C1%29-category'>group object in an (∞,1)-category</a></li> |
|
|
|
2157 |
|
|
|
2158 <li><a class='existingWikiWord' href='/nlab/show/abelian+group'>abelian group</a>, <a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></li> |
|
|
|
2159 |
|
|
|
2160 <li><a class='existingWikiWord' href='/nlab/show/action'>group action</a>, <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></li> |
|
|
|
2161 |
|
|
|
2162 <li><a class='existingWikiWord' href='/nlab/show/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/infinity-representation'>∞-representation</a></li> |
|
|
|
2163 |
|
|
|
2164 <li><a class='existingWikiWord' href='/nlab/show/progroup'>progroup</a></li> |
|
|
|
2165 |
|
|
|
2166 <li><a class='existingWikiWord' href='/nlab/show/homogeneous+space'>homogeneous space</a></li> |
|
|
|
2167 </ul> |
|
|
|
2168 |
|
|
|
2169 <h3 id='classical_groups'>Classical groups</h3> |
|
|
|
2170 |
|
|
|
2171 <ul> |
|
|
|
2172 <li> |
|
|
|
2173 <p><a class='existingWikiWord' href='/nlab/show/general+linear+group'>general linear group</a></p> |
|
|
|
2174 </li> |
|
|
|
2175 |
|
|
|
2176 <li> |
|
|
|
2177 <p><a class='existingWikiWord' href='/nlab/show/unitary+group'>unitary group</a></p> |
|
|
|
2178 |
|
|
|
2179 <ul> |
|
|
|
2180 <li><a class='existingWikiWord' href='/nlab/show/special+unitary+group'>special unitary group</a>. <a class='existingWikiWord' href='/nlab/show/projective+unitary+group'>projective unitary group</a></li> |
|
|
|
2181 </ul> |
|
|
|
2182 </li> |
|
|
|
2183 |
|
|
|
2184 <li> |
|
|
|
2185 <p><a class='existingWikiWord' href='/nlab/show/orthogonal+group'>orthogonal group</a></p> |
|
|
|
2186 |
|
|
|
2187 <ul> |
|
|
|
2188 <li><a class='existingWikiWord' href='/nlab/show/special+orthogonal+group'>special orthogonal group</a></li> |
|
|
|
2189 </ul> |
|
|
|
2190 </li> |
|
|
|
2191 |
|
|
|
2192 <li> |
|
|
|
2193 <p><a class='existingWikiWord' href='/nlab/show/symplectic+group'>symplectic group</a></p> |
|
|
|
2194 </li> |
|
|
|
2195 </ul> |
|
|
|
2196 |
|
|
|
2197 <h3 id='finite_groups'>Finite groups</h3> |
|
|
|
2198 |
|
|
|
2199 <ul> |
|
|
|
2200 <li> |
|
|
|
2201 <p><a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a></p> |
|
|
|
2202 </li> |
|
|
|
2203 |
|
|
|
2204 <li> |
|
|
|
2205 <p><a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a>, <a class='existingWikiWord' href='/nlab/show/cyclic+group'>cyclic group</a>, <a class='existingWikiWord' href='/nlab/show/braid+group'>braid group</a></p> |
|
|
|
2206 </li> |
|
|
|
2207 |
|
|
|
2208 <li> |
|
|
|
2209 <p><a class='existingWikiWord' href='/nlab/show/classification+of+finite+simple+groups'>classification of finite simple groups</a></p> |
|
|
|
2210 </li> |
|
|
|
2211 |
|
|
|
2212 <li> |
|
|
|
2213 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a></p> |
|
|
|
2214 |
|
|
|
2215 <ul> |
|
|
|
2216 <li><a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a>, <a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a></li> |
|
|
|
2217 </ul> |
|
|
|
2218 </li> |
|
|
|
2219 </ul> |
|
|
|
2220 |
|
|
|
2221 <h3 id='group_schemes'>Group schemes</h3> |
|
|
|
2222 |
|
|
|
2223 <ul> |
|
|
|
2224 <li><a class='existingWikiWord' href='/nlab/show/algebraic+group'>algebraic group</a></li> |
|
|
|
2225 |
|
|
|
2226 <li><a class='existingWikiWord' href='/nlab/show/abelian+variety'>abelian variety</a></li> |
|
|
|
2227 </ul> |
|
|
|
2228 |
|
|
|
2229 <h3 id='topological_groups'>Topological groups</h3> |
|
|
|
2230 |
|
|
|
2231 <ul> |
|
|
|
2232 <li> |
|
|
|
2233 <p><a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a></p> |
|
|
|
2234 </li> |
|
|
|
2235 |
|
|
|
2236 <li> |
|
|
|
2237 <p><a class='existingWikiWord' href='/nlab/show/compact+topological+group'>compact topological group</a>, <a class='existingWikiWord' href='/nlab/show/locally+compact+topological+group'>locally compact topological group</a></p> |
|
|
|
2238 </li> |
|
|
|
2239 |
|
|
|
2240 <li> |
|
|
|
2241 <p><a class='existingWikiWord' href='/nlab/show/maximal+compact+subgroup'>maximal compact subgroup</a></p> |
|
|
|
2242 </li> |
|
|
|
2243 |
|
|
|
2244 <li> |
|
|
|
2245 <p><a class='existingWikiWord' href='/nlab/show/string+group'>string group</a></p> |
|
|
|
2246 </li> |
|
|
|
2247 </ul> |
|
|
|
2248 |
|
|
|
2249 <h3 id='lie_groups'>Lie groups</h3> |
|
|
|
2250 |
|
|
|
2251 <ul> |
|
|
|
2252 <li> |
|
|
|
2253 <p><a class='existingWikiWord' href='/nlab/show/Lie+group'>Lie group</a></p> |
|
|
|
2254 </li> |
|
|
|
2255 |
|
|
|
2256 <li> |
|
|
|
2257 <p><a class='existingWikiWord' href='/nlab/show/compact+Lie+group'>compact Lie group</a></p> |
|
|
|
2258 </li> |
|
|
|
2259 |
|
|
|
2260 <li> |
|
|
|
2261 <p><a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody group</a></p> |
|
|
|
2262 </li> |
|
|
|
2263 </ul> |
|
|
|
2264 |
|
|
|
2265 <h3 id='superlie_groups'>Super-Lie groups</h3> |
|
|
|
2266 |
|
|
|
2267 <ul> |
|
|
|
2268 <li> |
|
|
|
2269 <p><a class='existingWikiWord' href='/nlab/show/supergroup'>super Lie group</a></p> |
|
|
|
2270 </li> |
|
|
|
2271 |
|
|
|
2272 <li> |
|
|
|
2273 <p><a class='existingWikiWord' href='/nlab/show/super+Euclidean+group'>super Euclidean group</a></p> |
|
|
|
2274 </li> |
|
|
|
2275 </ul> |
|
|
|
2276 |
|
|
|
2277 <h3 id='higher_groups'>Higher groups</h3> |
|
|
|
2278 |
|
|
|
2279 <ul> |
|
|
|
2280 <li> |
|
|
|
2281 <p><a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a></p> |
|
|
|
2282 |
|
|
|
2283 <ul> |
|
|
|
2284 <li><a class='existingWikiWord' href='/nlab/show/crossed+module'>crossed module</a>, <a class='existingWikiWord' href='/nlab/show/strict+2-group'>strict 2-group</a></li> |
|
|
|
2285 </ul> |
|
|
|
2286 </li> |
|
|
|
2287 |
|
|
|
2288 <li> |
|
|
|
2289 <p><a class='existingWikiWord' href='/nlab/show/n-group'>n-group</a></p> |
|
|
|
2290 </li> |
|
|
|
2291 |
|
|
|
2292 <li> |
|
|
|
2293 <p><a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></p> |
|
|
|
2294 |
|
|
|
2295 <ul> |
|
|
|
2296 <li> |
|
|
|
2297 <p><a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a></p> |
|
|
|
2298 </li> |
|
|
|
2299 |
|
|
|
2300 <li> |
|
|
|
2301 <p><a class='existingWikiWord' href='/nlab/show/crossed+complex'>crossed complex</a></p> |
|
|
|
2302 </li> |
|
|
|
2303 |
|
|
|
2304 <li> |
|
|
|
2305 <p><a class='existingWikiWord' href='/nlab/show/k-tuply+groupal+n-groupoid'>k-tuply groupal n-groupoid</a></p> |
|
|
|
2306 </li> |
|
|
|
2307 |
|
|
|
2308 <li> |
|
|
|
2309 <p><a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></p> |
|
|
|
2310 </li> |
|
|
|
2311 </ul> |
|
|
|
2312 </li> |
|
|
|
2313 |
|
|
|
2314 <li> |
|
|
|
2315 <p><a class='existingWikiWord' href='/nlab/show/circle+n-group'>circle n-group</a>, <a class='existingWikiWord' href='/nlab/show/string+2-group'>string 2-group</a>, <a class='existingWikiWord' href='/nlab/show/fivebrane+6-group'>fivebrane Lie 6-group</a></p> |
|
|
|
2316 </li> |
|
|
|
2317 </ul> |
|
|
|
2318 |
|
|
|
2319 <h3 id='cohomology_and_extensions'>Cohomology and Extensions</h3> |
|
|
|
2320 |
|
|
|
2321 <ul> |
|
|
|
2322 <li> |
|
|
|
2323 <p><a class='existingWikiWord' href='/nlab/show/group+cohomology'>group cohomology</a></p> |
|
|
|
2324 </li> |
|
|
|
2325 |
|
|
|
2326 <li> |
|
|
|
2327 <p><a class='existingWikiWord' href='/nlab/show/group+extension'>group extension</a>,</p> |
|
|
|
2328 </li> |
|
|
|
2329 |
|
|
|
2330 <li> |
|
|
|
2331 <p><a class='existingWikiWord' href='/nlab/show/infinity-group+extension'>∞-group extension</a>, <a class='existingWikiWord' href='/nlab/show/Ext'>Ext-group</a></p> |
|
|
|
2332 </li> |
|
|
|
2333 </ul> |
|
|
|
2334 |
|
|
|
2335 <h3 id='_related_concepts'>Related concepts</h3> |
|
|
|
2336 |
|
|
|
2337 <ul> |
|
|
|
2338 <li><a class='existingWikiWord' href='/nlab/show/quantum+group'>quantum group</a></li> |
|
|
|
2339 </ul> |
|
|
|
2340 <div> |
|
|
|
2341 <p> |
|
|
|
2342 <a href='/nlab/edit/group+theory+-+contents'>Edit this sidebar</a> |
|
|
|
2343 </p> |
|
|
|
2344 </div></div> |
|
|
|
2345 </div> |
|
|
|
2346 </div> |
|
|
|
2347 |
|
|
|
2348 <h1 id='contents'>Contents</h1> |
|
|
|
2349 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#history'>History</a></li><li><a href='#presentation'>Presentation</a><ul><li><a href='#via_coxeter_groups'>Via Coxeter groups</a></li><li><a href='#ViaAutomorphisms'>Via automorphisms of a super vertex operator algebra</a></li></ul></li><li><a href='#related_concepts_2'>Related concepts</a></li><li><a href='#references'>References</a></li></ul></div> |
|
|
|
2350 <h2 id='idea'>Idea</h2> |
|
|
|
2351 |
|
|
|
2352 <p>The <strong>Monster group</strong> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a> that is the largest of the <a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple group</a>s. It has <a class='existingWikiWord' href='/nlab/show/order+of+a+group'>order</a></p> |
|
|
|
2353 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd></mtd> <mtd><msup><mn>2</mn> <mn>46</mn></msup><mo>⋅</mo><msup><mn>3</mn> <mn>20</mn></msup><mo>⋅</mo><msup><mn>5</mn> <mn>9</mn></msup><mo>⋅</mo><msup><mn>7</mn> <mn>6</mn></msup><mo>⋅</mo><msup><mn>11</mn> <mn>2</mn></msup><mo>⋅</mo><msup><mn>13</mn> <mn>3</mn></msup><mo>⋅</mo><mn>17</mn><mo>⋅</mo><mn>19</mn><mo>⋅</mo><mn>23</mn><mo>⋅</mo><mn>29</mn><mo>⋅</mo><mn>31</mn><mo>⋅</mo><mn>41</mn><mo>⋅</mo><mn>47</mn><mo>⋅</mo><mn>59</mn><mo>⋅</mo><mn>71</mn></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mn>808017424794512875886459904961710757005754368000000000</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
2354 \begin{aligned} |
|
|
|
2355 & 2^{46}\cdot 3^{20}\cdot 5^9\cdot 7^6\cdot 11^2\cdot 13^3\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 41\cdot 47\cdot 59\cdot 71 |
|
|
|
2356 \\ |
|
|
|
2357 & = 808017424794512875886459904961710757005754368000000000 |
|
|
|
2358 \end{aligned} |
|
|
|
2359 |
|
|
|
2360 </annotation></semantics></math></div> |
|
|
|
2361 <p>and contains all but six (the ‘<a class='existingWikiWord' href='/nlab/show/pariah+group'>pariah groups</a>’) of the other 25 <a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a> as <a class='existingWikiWord' href='/nlab/show/subquotient'>subquotients</a>, called the <em><a class='existingWikiWord' href='/nlab/show/Happy+Family'>Happy Family</a></em>.</p> |
|
|
|
2362 |
|
|
|
2363 <p>See also <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine</a>.</p> |
|
|
|
2364 |
|
|
|
2365 <h2 id='history'>History</h2> |
|
|
|
2366 |
|
|
|
2367 <p>The Monster group was predicted to exist by <a class='existingWikiWord' href='/nlab/show/Bernd+Fischer'>Bernd Fischer</a> and <a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a> in 1973, as a <a class='existingWikiWord' href='/nlab/show/simple+group'>simple group</a> containing the <a class='existingWikiWord' href='/nlab/show/Fischer+group'>Fischer groups</a> and some other sporadic simple groups as <a class='existingWikiWord' href='/nlab/show/subquotient'>subquotients</a>. Subsequent work by Fischer, Conway, Norton and Thompson estimated the order of <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math> and discovered other properties and subgroups, assuming that it existed. In a famous paper</p> |
|
|
|
2368 |
|
|
|
2369 <ul> |
|
|
|
2370 <li><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a>, <em>The Friendly Giant</em> , Inventiones (1982)</li> |
|
|
|
2371 </ul> |
|
|
|
2372 |
|
|
|
2373 <p>Griess proved the existence of the largest simple sporadic group. The author constructs “by hand” a non-associative but commutative algebra of dimension 196883, and showed that the <a class='existingWikiWord' href='/nlab/show/automorphism'>automorphism group</a> of this algebra is the conjectured friendly giant/monster simple group. The name “Friendly Giant” for the Monster did not take on.</p> |
|
|
|
2374 |
|
|
|
2375 <p>After Griess found this algebra <a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a> and Meurman and/or Borcherds showed that the Griess algebra is just the degree 2 part of the infinite dimensional <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine vertex algebra</a>.</p> |
|
|
|
2376 |
|
|
|
2377 <p>There is a school of thought, going back to at least <a class='existingWikiWord' href='/nlab/show/Israel+Gelfand'>Israel Gelfand</a>, that sporadic groups are really members of some other infinite families of algebraic objects, but due to numerical coincidences or the like, just happen to be groups (see <a href='http://golem.ph.utexas.edu/category/2006/09/mathematical_kinds.html'>this nCafe post</a>). One version of this, in the case of the Monster (and perhaps for other sporadic groups via <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine</a> phenomena) is that what we know as the Monster is just a shadow of a <a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a>, as the Monster can be constructed as an automorphism group of a <a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>conformal field theory</a>, a structure rich enough to have a automorphism 2-group(oid) (see <a href='http://golem.ph.utexas.edu/category/2008/10/john_mckay_visits_kent.html#c019440'>this nCafe discussion</a>).</p> |
|
|
|
2378 |
|
|
|
2379 <h2 id='presentation'>Presentation</h2> |
|
|
|
2380 |
|
|
|
2381 <h3 id='via_coxeter_groups'>Via Coxeter groups</h3> |
|
|
|
2382 |
|
|
|
2383 <p>The Monster admits a reasonably succinct description in terms of <a class='existingWikiWord' href='/nlab/show/Coxeter+group'>Coxeter groups</a>. Let <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[n]</annotation></semantics></math> denote the linear <a class='existingWikiWord' href='/nlab/show/graph'>graph</a> with vertices <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mi>…</mi><mo>,</mo><mi>n</mi></mrow><annotation encoding='application/x-tex'>0, 1, \ldots, n</annotation></semantics></math> with an edge between adjacent numbers <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi><mo>,</mo><mi>i</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>i, i+1</annotation></semantics></math> and no others. If <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math> is the terminal (1-element) graph, there is a map <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [n]</annotation></semantics></math>, mapping the vertex of <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math> to the vertex <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math>. Regarding this as an object in the <a class='existingWikiWord' href='/nlab/show/under+category'>undercategory</a> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo stretchy='false'>↓</mo><mi>Graph</mi></mrow><annotation encoding='application/x-tex'>1 \downarrow Graph</annotation></semantics></math>, let <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Y</mi> <mn>443</mn></msub></mrow><annotation encoding='application/x-tex'>Y_{443}</annotation></semantics></math> be the <a class='existingWikiWord' href='/nlab/show/coproduct'>coproduct</a> of the three objects <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mn>4</mn><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [4]</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mn>4</mn><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [4]</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>0</mn><mo>:</mo><mn>1</mn><mo>→</mo><mo stretchy='false'>[</mo><mn>3</mn><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>0: 1 \to [3]</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo stretchy='false'>↓</mo><mi>Graph</mi></mrow><annotation encoding='application/x-tex'>1 \downarrow Graph</annotation></semantics></math>. This (pointed) graph has 12 elements and is shaped like a <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>, with arms of length 4, 4, 3 emanating from a central vertex of valence <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math>.</p> |
|
|
|
2384 |
|
|
|
2385 <p>Regard <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Y</mi> <mn>443</mn></msub></mrow><annotation encoding='application/x-tex'>Y_{443}</annotation></semantics></math> as a <a class='existingWikiWord' href='/nlab/show/Coxeter+group'>Coxeter diagram</a>. The associated <a class='existingWikiWord' href='/nlab/show/Coxeter+group'>Coxeter group</a> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>C</mi> <mn>443</mn></msub></mrow><annotation encoding='application/x-tex'>C_{443}</annotation></semantics></math> is given by a <a class='existingWikiWord' href='/nlab/show/group+presentation'>group presentation</a> with 12 generators (represented by the vertices) of order <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math> (so 12 relators of the form <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>x</mi> <mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>x^2 = 1</annotation></semantics></math>), with a relation <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>x</mi><mi>y</mi><msup><mo stretchy='false'>)</mo> <mn>3</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(x y)^3 = 1</annotation></semantics></math> if <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>x, y</annotation></semantics></math> are adjacent vertices (so 11 relators, one for each edge), and <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mi>y</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>x y = y x</annotation></semantics></math> if <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><annotation encoding='application/x-tex'>x, y</annotation></semantics></math> are non-adjacent (55 more relators). This Coxeter group (12 generators, 78 relators) is infinite, but by modding out by another strange ‘spider’ relator</p> |
|
|
|
2386 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>a</mi><msub><mi>b</mi> <mn>1</mn></msub><msub><mi>c</mi> <mn>1</mn></msub><mi>a</mi><msub><mi>b</mi> <mn>2</mn></msub><msub><mi>c</mi> <mn>2</mn></msub><mi>a</mi><msub><mi>b</mi> <mn>3</mn></msub><msub><mi>c</mi> <mn>3</mn></msub><msup><mo stretchy='false'>)</mo> <mn>10</mn></msup><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(a b_1 c_1 a b_2 c_2 a b_3 c_3)^{10} = 1</annotation></semantics></math></div> |
|
|
|
2387 <p>the resulting quotient <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math> turns out to be a <a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a>. Here <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> is the central vertex of valence <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math>, <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>b_1, c_1</annotation></semantics></math> are on an arm of length <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math> with <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>b_1</annotation></semantics></math> adjacent to <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>≠</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>c_1 \neq a</annotation></semantics></math> adjacent to <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>b_1</annotation></semantics></math>; similarly for <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>b_2, c_2</annotation></semantics></math> on the other arm of length <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math>, and for <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>b</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>c</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>b_3, c_3</annotation></semantics></math> on the arm of length <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math>. See <a href='http://www.maths.qmul.ac.uk/~jnb/web/Pres/Mnst.html'>here</a> if this is not clear.</p> |
|
|
|
2388 |
|
|
|
2389 <p>It turns out that <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math> has a <a class='existingWikiWord' href='/nlab/show/center'>center</a> <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> of order <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math>, and the Monster <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math> is the quotient, i.e. the indicated term in the exact sequence</p> |
|
|
|
2390 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo>→</mo><mi>C</mi><mo>→</mo><mi>N</mi><mo>→</mo><mi>M</mi><mo>→</mo><mn>1</mn><mo>.</mo></mrow><annotation encoding='application/x-tex'>1 \to C \to N \to M \to 1.</annotation></semantics></math></div> |
|
|
|
2391 <p>This implicitly describes the Monster in terms of 12 generators and 80 relators.</p> |
|
|
|
2392 |
|
|
|
2393 <p>Such “<math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>-group” presentations (Coxeter group based on a similar <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math>-diagram, modulo a spider relation) are linked to a number of finite simple group constructions, the most famous of which is perhaps <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Y</mi> <mn>555</mn></msub></mrow><annotation encoding='application/x-tex'>Y_{555}</annotation></semantics></math> which is a presentation of the “Bimonster” (the <a class='existingWikiWord' href='/nlab/show/wreath+product'>wreath product</a> of the Monster with <math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℤ</mi><mo stretchy='false'>/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\mathbb{Z}/2</annotation></semantics></math>). See <a href='#Iv'>Ivanov</a> for a general description of these. The presentation of the Monster given above was established in <a href='#Iv2'>Ivanov2</a>.</p> |
|
|
|
2394 |
|
|
|
2395 <h3 id='ViaAutomorphisms'>Via automorphisms of a super vertex operator algebra</h3> |
|
|
|
2396 |
|
|
|
2397 <p>There is a <a class='existingWikiWord' href='/nlab/show/super+vertex+operator+algebra'>super vertex operator algebra</a>, the <a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex operator algebra</a>, whose <a class='existingWikiWord' href='/nlab/show/automorphism'>group of</a> of <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of a VOA</a> is the <a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a>.</p> |
|
|
|
2398 |
|
|
|
2399 <p>(<a href='#FrenkelLepowskiMeurman89'>Frenkel-Lepowski-Meurman 89</a>, <a href='#GriessLam11'>Griess-Lam 11</a>)</p> |
|
|
|
2400 |
|
|
|
2401 <h2 id='related_concepts_2'>Related concepts</h2> |
|
|
|
2402 |
|
|
|
2403 <ul> |
|
|
|
2404 <li> |
|
|
|
2405 <p><a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine</a>,</p> |
|
|
|
2406 </li> |
|
|
|
2407 |
|
|
|
2408 <li> |
|
|
|
2409 <p><a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex algebra</a></p> |
|
|
|
2410 </li> |
|
|
|
2411 |
|
|
|
2412 <li> |
|
|
|
2413 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a>, <a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p> |
|
|
|
2414 </li> |
|
|
|
2415 </ul> |
|
|
|
2416 |
|
|
|
2417 <h2 id='references'>References</h2> |
|
|
|
2418 |
|
|
|
2419 <ul> |
|
|
|
2420 <li> |
|
|
|
2421 <p><a href='http://mathoverflow.net/users/39521/adam-p-goucher'>Adam P. Goucher</a>, <em>Presentation of the Monster Group</em>, (<a href='http://mathoverflow.net/q/142216'>MO comment 2013-09-15</a>)</p> |
|
|
|
2422 </li> |
|
|
|
2423 |
|
|
|
2424 <li id='Iv'> |
|
|
|
2425 <p>Alexander Ivanov, <em>Y-groups via transitive extension</em>, Journal of Algebra, Volume 218, Issue 2 (August 15, 1999), 412–435. (<a href='http://www.sciencedirect.com/science/article/pii/S0021869399978821'>web</a>)</p> |
|
|
|
2426 </li> |
|
|
|
2427 |
|
|
|
2428 <li id='Iv2'> |
|
|
|
2429 <p>A. A. Ivanov, <em>Constructing the Monster via its Y-presentation</em>, in Combinatorics, Paul Erdős is Eighty, Bolyai Society Mathematical Studies, Vol. 1 (1993), 253-270.</p> |
|
|
|
2430 </li> |
|
|
|
2431 |
|
|
|
2432 <li id='FrenkelLepowskiMeurman89'> |
|
|
|
2433 <p><a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a>, Arne Meurman, <em>Vertex operator algebras and the monster</em>, Pure and Applied Mathematics <strong>134</strong>, Academic Press, New York 1998. liv+508 pp. <a href='http://www.ams.org/mathscinet-getitem?mr=996026'>MR0996026</a></p> |
|
|
|
2434 </li> |
|
|
|
2435 |
|
|
|
2436 <li id='GriessLam11'> |
|
|
|
2437 <p><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a> Jr., Ching Hung Lam, <em>A new existence proof of the Monster by VOA theory</em> (<a href='https://arxiv.org/abs/1103.1414'>arXiv:1103.1414</a>)</p> |
|
|
|
2438 </li> |
|
|
|
2439 |
|
|
|
2440 <li> |
|
|
|
2441 <p><a class='existingWikiWord' href='/nlab/show/Andr%C3%A9+Henriques'>Andre Henriques</a>, <em><a href='http://mathoverflow.net/questions/69222/h4-of-the-monster'><math class='maruku-mathml' display='inline' id='mathml_b35f69f4bff39d523891a433ebff1bc914c95b59_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>H</mi> <mn>4</mn></msup></mrow><annotation encoding='application/x-tex'>H^4</annotation></semantics></math> of the monster</a></em></p> |
|
|
|
2442 </li> |
|
|
|
2443 </ul> |
|
|
|
2444 |
|
|
|
2445 <p>Possible relation to <a class='existingWikiWord' href='/nlab/show/bosonic+M-theory'>bosonic M-theory</a>:</p> |
|
|
|
2446 |
|
|
|
2447 <ul> |
|
|
|
2448 <li><a class='existingWikiWord' href='/nlab/show/Alessio+Marrani'>Alessio Marrani</a>, <a class='existingWikiWord' href='/nlab/show/Michael+Rios'>Michael Rios</a>, <a class='existingWikiWord' href='/nlab/show/David+Chester'>David Chester</a>, <em>Monstrous M-theory</em> (<a href='https://arxiv.org/abs/2008.06742'>arXiv:2008.06742</a>)</li> |
|
|
|
2449 </ul> |
|
|
|
2450 <div style='float: right; margin: 0 20px 10px 20px;'><img alt='The Monster' src='http://t0.gstatic.com/images?q=tbn:nJNML0QhNiejuM:http://open.salon.com/files/cookie-monster3-7769871237963363.jpg ' width='80'/></div> |
|
|
|
2451 <p> |
|
|
|
2452 </p> |
|
|
|
2453 |
|
|
|
2454 <p> |
|
|
|
2455 </p> |
|
|
|
2456 |
|
|
|
2457 <p> |
|
|
|
2458 </p> </div> |
|
|
|
2459 </content> |
|
|
|
2460 </entry> |
|
|
|
2461 <entry> |
|
|
|
2462 <title type="html">Moonshine</title> |
|
|
|
2463 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Moonshine"/> |
|
|
|
2464 <updated>2021-07-01T21:06:02Z</updated> |
|
|
|
2465 <published>2010-05-18T20:54:08Z</published> |
|
|
|
2466 <id>tag:ncatlab.org,2010-05-18:nLab,Moonshine</id> |
|
|
|
2467 <author> |
|
|
|
2468 <name>Urs Schreiber</name> |
|
|
|
2469 </author> |
|
|
|
2470 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Moonshine"> |
|
|
|
2471 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
2472 <div class='rightHandSide'> |
|
|
|
2473 <div class='toc clickDown' tabindex='0'> |
|
|
|
2474 <h3 id='context'>Context</h3> |
|
|
|
2475 |
|
|
|
2476 <h4 id='exceptional_structures'>Exceptional structures</h4> |
|
|
|
2477 |
|
|
|
2478 <div class='hide'> |
|
|
|
2479 <p><strong><a class='existingWikiWord' href='/nlab/show/exceptional+structure'>exceptional structures</a></strong>, <a class='existingWikiWord' href='/nlab/show/exceptional+isomorphism'>exceptional isomorphisms</a></p> |
|
|
|
2480 |
|
|
|
2481 <h2 id='examples'>Examples</h2> |
|
|
|
2482 |
|
|
|
2483 <ul> |
|
|
|
2484 <li> |
|
|
|
2485 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>exceptional finite groups</a></p> |
|
|
|
2486 |
|
|
|
2487 <ul> |
|
|
|
2488 <li> |
|
|
|
2489 <p><a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a></p> |
|
|
|
2490 </li> |
|
|
|
2491 |
|
|
|
2492 <li> |
|
|
|
2493 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a>,</p> |
|
|
|
2494 </li> |
|
|
|
2495 |
|
|
|
2496 <li> |
|
|
|
2497 <p><a class='existingWikiWord' href='/nlab/show/Conway+group'>Conway group</a></p> |
|
|
|
2498 </li> |
|
|
|
2499 </ul> |
|
|
|
2500 </li> |
|
|
|
2501 |
|
|
|
2502 <li> |
|
|
|
2503 <p>exceptional <a class='existingWikiWord' href='/nlab/show/finite+rotation+group'>finite rotation groups</a>:</p> |
|
|
|
2504 |
|
|
|
2505 <ul> |
|
|
|
2506 <li> |
|
|
|
2507 <p><a class='existingWikiWord' href='/nlab/show/tetrahedral+group'>tetrahedral group</a></p> |
|
|
|
2508 </li> |
|
|
|
2509 |
|
|
|
2510 <li> |
|
|
|
2511 <p><a class='existingWikiWord' href='/nlab/show/octahedral+group'>octahedral group</a></p> |
|
|
|
2512 </li> |
|
|
|
2513 |
|
|
|
2514 <li> |
|
|
|
2515 <p><a class='existingWikiWord' href='/nlab/show/icosahedral+group'>icosahedral group</a></p> |
|
|
|
2516 </li> |
|
|
|
2517 </ul> |
|
|
|
2518 </li> |
|
|
|
2519 |
|
|
|
2520 <li> |
|
|
|
2521 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+group'>exceptional Lie groups</a></p> |
|
|
|
2522 |
|
|
|
2523 <ul> |
|
|
|
2524 <li> |
|
|
|
2525 <p><a class='existingWikiWord' href='/nlab/show/G2'>G2</a></p> |
|
|
|
2526 </li> |
|
|
|
2527 |
|
|
|
2528 <li> |
|
|
|
2529 <p><a class='existingWikiWord' href='/nlab/show/F4'>F4</a></p> |
|
|
|
2530 </li> |
|
|
|
2531 |
|
|
|
2532 <li> |
|
|
|
2533 <p><a class='existingWikiWord' href='/nlab/show/E6'>E6</a>, <a class='existingWikiWord' href='/nlab/show/E7'>E7</a>, <a class='existingWikiWord' href='/nlab/show/E8'>E8</a></p> |
|
|
|
2534 </li> |
|
|
|
2535 </ul> |
|
|
|
2536 |
|
|
|
2537 <p>and <a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody groups</a>:</p> |
|
|
|
2538 |
|
|
|
2539 <ul> |
|
|
|
2540 <li><a class='existingWikiWord' href='/nlab/show/E9'>E9</a>, <a class='existingWikiWord' href='/nlab/show/E10'>E10</a>, <a class='existingWikiWord' href='/nlab/show/E11'>E11</a>, …</li> |
|
|
|
2541 </ul> |
|
|
|
2542 </li> |
|
|
|
2543 |
|
|
|
2544 <li> |
|
|
|
2545 <p><a class='existingWikiWord' href='/nlab/show/Dwyer-Wilkerson+H-space'>Dwyer-Wilkerson H-space</a></p> |
|
|
|
2546 </li> |
|
|
|
2547 |
|
|
|
2548 <li> |
|
|
|
2549 <p><a class='existingWikiWord' href='/nlab/show/exceptional+Lie+algebra'>exceptional Lie algebras</a></p> |
|
|
|
2550 </li> |
|
|
|
2551 |
|
|
|
2552 <li> |
|
|
|
2553 <p><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>exceptional Jordan algebra</a></p> |
|
|
|
2554 |
|
|
|
2555 <ul> |
|
|
|
2556 <li><a class='existingWikiWord' href='/nlab/show/Albert+algebra'>Albert algebra</a></li> |
|
|
|
2557 </ul> |
|
|
|
2558 </li> |
|
|
|
2559 |
|
|
|
2560 <li> |
|
|
|
2561 <p>exceptional <a class='existingWikiWord' href='/nlab/show/Jordan+superalgebra'>Jordan superalgebra</a>, <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>K</mi> <mn>10</mn></msub></mrow><annotation encoding='application/x-tex'>K_10</annotation></semantics></math></p> |
|
|
|
2562 </li> |
|
|
|
2563 |
|
|
|
2564 <li> |
|
|
|
2565 <p><a class='existingWikiWord' href='/nlab/show/Leech+lattice'>Leech lattice</a></p> |
|
|
|
2566 </li> |
|
|
|
2567 |
|
|
|
2568 <li> |
|
|
|
2569 <p><a class='existingWikiWord' href='/nlab/show/Cayley+plane'>Cayley plane</a></p> |
|
|
|
2570 </li> |
|
|
|
2571 </ul> |
|
|
|
2572 |
|
|
|
2573 <h2 id='interrelations'>Interrelations</h2> |
|
|
|
2574 |
|
|
|
2575 <ul> |
|
|
|
2576 <li> |
|
|
|
2577 <p><a class='existingWikiWord' href='/nlab/show/division+algebra+and+supersymmetry'>supersymmetry and division algebras</a></p> |
|
|
|
2578 </li> |
|
|
|
2579 |
|
|
|
2580 <li> |
|
|
|
2581 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+magic+square'>Freudenthal magic square</a></p> |
|
|
|
2582 </li> |
|
|
|
2583 |
|
|
|
2584 <li> |
|
|
|
2585 <p><a class='existingWikiWord' href='/nlab/show/Moonshine'>moonshine</a></p> |
|
|
|
2586 |
|
|
|
2587 <ul> |
|
|
|
2588 <li> |
|
|
|
2589 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p> |
|
|
|
2590 </li> |
|
|
|
2591 |
|
|
|
2592 <li> |
|
|
|
2593 <p><a class='existingWikiWord' href='/nlab/show/umbral+moonshine'>umbral moonshine</a></p> |
|
|
|
2594 </li> |
|
|
|
2595 |
|
|
|
2596 <li> |
|
|
|
2597 <p><a class='existingWikiWord' href='/nlab/show/O%27Nan+moonshine'>O'Nan moonshine</a></p> |
|
|
|
2598 </li> |
|
|
|
2599 </ul> |
|
|
|
2600 </li> |
|
|
|
2601 </ul> |
|
|
|
2602 |
|
|
|
2603 <h2 id='applications'>Applications</h2> |
|
|
|
2604 |
|
|
|
2605 <ul> |
|
|
|
2606 <li> |
|
|
|
2607 <p><a class='existingWikiWord' href='/nlab/show/exceptional+geometry'>exceptional geometry</a>, <a class='existingWikiWord' href='/nlab/show/exceptional+generalized+geometry'>exceptional generalized geometry</a>,</p> |
|
|
|
2608 </li> |
|
|
|
2609 |
|
|
|
2610 <li> |
|
|
|
2611 <p><a class='existingWikiWord' href='/nlab/show/exceptional+field+theory'>exceptional field theory</a></p> |
|
|
|
2612 </li> |
|
|
|
2613 </ul> |
|
|
|
2614 |
|
|
|
2615 <h2 id='philosophy'>Philosophy</h2> |
|
|
|
2616 |
|
|
|
2617 <ul> |
|
|
|
2618 <li><a class='existingWikiWord' href='/nlab/show/universal+exceptionalism'>universal exceptionalism</a></li> |
|
|
|
2619 </ul> |
|
|
|
2620 </div> |
|
|
|
2621 </div> |
|
|
|
2622 </div> |
|
|
|
2623 |
|
|
|
2624 <h1 id='contents'>Contents</h1> |
|
|
|
2625 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#AutomorphismGroupsOfVertexOperatorAlgebras'>Automorphism groups of vertex operator algebras</a></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a><ul><li><a href='#general'>General</a></li><li><a href='#historical_references'>Historical References</a></li><li><a href='#FurtherDevelomentsReferences'>Further developments</a></li><li><a href='#realization_in_superstring_theory'>Realization in superstring theory</a></li></ul></li></ul></div> |
|
|
|
2626 <h2 id='idea'>Idea</h2> |
|
|
|
2627 |
|
|
|
2628 <p>Moonshine usually refers to the mysterious connections between the <a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster simple group</a> and the modular function <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi></mrow><annotation encoding='application/x-tex'>j</annotation></semantics></math>, the <a class='existingWikiWord' href='/nlab/show/j-invariant'>j-invariant</a>. There were a bunch of <a class='existingWikiWord' href='/nlab/show/conjecture'>conjectures</a> about this connection that were proved by <a class='existingWikiWord' href='/nlab/show/Richard+Borcherds'>Richard Borcherds</a>, en passant mentioning the existence of the <a class='existingWikiWord' href='/nlab/show/Moonshine'>Moonshine vertex algebra</a> (constructed then later in <a href='#FrenkelLepowskiMeurman89'>FLM 89</a>). Nowadays there is also Moonshine for other simple groups, by the work of J. Duncan. Eventually there should be an entry for the general moonshine phenomenon.</p> |
|
|
|
2629 |
|
|
|
2630 <p>The whole idea of moonshine began with <a class='existingWikiWord' href='/nlab/show/John+McKay'>John McKay</a>’s observation that the <a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a>’s first nontrivial <a class='existingWikiWord' href='/nlab/show/irreducible+representation'>irreducible representation</a> has <a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a> 196883, and the <a class='existingWikiWord' href='/nlab/show/j-invariant'>j-invariant</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi><mo stretchy='false'>(</mo><mi>τ</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>j(\tau)</annotation></semantics></math> has the <a class='existingWikiWord' href='/nlab/show/Fourier+transform'>Fourier series</a> expansion</p> |
|
|
|
2631 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi><mo stretchy='false'>(</mo><mi>τ</mi><mo stretchy='false'>)</mo><mo>=</mo><msup><mi>q</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo>+</mo><mn>744</mn><mo>+</mo><mn>196884</mn><mi>q</mi><mo>+</mo><mn>21493760</mn><msup><mi>q</mi> <mn>2</mn></msup><mo>+</mo><mi>…</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
2632 j(\tau) = q^{-1} + 744 + 196884q + 21493760q^{2} + \dots |
|
|
|
2633 |
|
|
|
2634 </annotation></semantics></math></div> |
|
|
|
2635 <p>where <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>q</mi><mo>=</mo><mi>exp</mi><mo stretchy='false'>(</mo><mi>i</mi><mn>2</mn><mi>π</mi><mi>τ</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>q=\exp(i2\pi\tau)</annotation></semantics></math>, and famously 196883+1=196884. Thompson observed in (1979) that the other coefficients are obtained from the dimensions of Monster’s irreducible representations.</p> |
|
|
|
2636 |
|
|
|
2637 <p>But the monster was merely <em>conjectured</em> to exist until Griess (1982) explicitly constructed it. The construction is horribly complicated (take the sum of three irreducible representations for the <a class='existingWikiWord' href='/nlab/show/centralizer'>centralizer</a> of an <a class='existingWikiWord' href='/nlab/show/involution'>involution</a> of…).</p> |
|
|
|
2638 |
|
|
|
2639 <p><a href='#FrenkelLepowskiMeurman89'>Frenkel-Lepowski-Meurman 89</a> constructed an infinite-dimensional <a class='existingWikiWord' href='/nlab/show/module'>module</a> for the <a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex algebra</a>. This is by a generalized <a class='existingWikiWord' href='/nlab/show/Kac-Moody+algebra'>Kac-Moody algebra</a> via <a class='existingWikiWord' href='/nlab/show/bosonic+string+theory'>bosonic string theory</a> and the <a class='existingWikiWord' href='/nlab/show/Goddard-Thorn+theorem'>Goddard-Thorn "No Ghost" theorem</a>. The <a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a> acts naturally on this “Moonshine Module” (denoted by <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>V</mi><mo>♮</mo></mrow><annotation encoding='application/x-tex'>V\natural</annotation></semantics></math>).</p> |
|
|
|
2640 |
|
|
|
2641 <p>To cut the story short, we end up getting from the Monster group to a module it acts on which is related to “modular stuff” (namely, the modular <a class='existingWikiWord' href='/nlab/show/j-invariant'>j-invariant</a>). The idea <a class='existingWikiWord' href='/nlab/show/Terry+Gannon'>Terry Gannon</a> pitches is that Moonshine is a generalization of this association, it’s a sort of “mapping” from “Algebraic gadgets” to “Modular stuff”.</p> |
|
|
|
2642 |
|
|
|
2643 <h2 id='AutomorphismGroupsOfVertexOperatorAlgebras'>Automorphism groups of vertex operator algebras</h2> |
|
|
|
2644 |
|
|
|
2645 <p>Realizations of <a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a> as <span class='newWikiWord'>automorphism groups of vertex operator algebras<a href='/nlab/new/automorphism+groups+of+vertex+operator+algebras'>?</a></span> in <a class='existingWikiWord' href='/nlab/show/heterotic+string+theory'>heterotic string theory</a> and <a class='existingWikiWord' href='/nlab/show/type+II+string+theory'>type II string theory</a> (mostly on <a class='existingWikiWord' href='/nlab/show/K3+surface'>K3-surfaces</a>, see <a class='existingWikiWord' href='/nlab/show/duality+between+heterotic+and+type+II+string+theory'>HET - II duality</a>):</p> |
|
|
|
2646 |
|
|
|
2647 <ul> |
|
|
|
2648 <li> |
|
|
|
2649 <p>The <a class='existingWikiWord' href='/nlab/show/Conway+group'>Conway group</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Co</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>Co_{0}</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/automorphism'>group of</a> <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of a super VOA</a> of the unique chiral <a class='existingWikiWord' href='/nlab/show/number+of+supersymmetries'>N=1</a> <a class='existingWikiWord' href='/nlab/show/super+vertex+operator+algebra'>super vertex operator algebra</a> of <a class='existingWikiWord' href='/nlab/show/central+charge'>central charge</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>=</mo><mn>12</mn></mrow><annotation encoding='application/x-tex'>c = 12</annotation></semantics></math> without fields of <a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>conformal weight</a> <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>1</mn><mo stretchy='false'>/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1/2</annotation></semantics></math></p> |
|
|
|
2650 |
|
|
|
2651 <p>(<a href='#Duncan05'>Duncan 05</a>, see also <a href='#PaquettePerssonVolpato17'>Paquette-Persson-Volpato 17, p. 9</a>)</p> |
|
|
|
2652 </li> |
|
|
|
2653 |
|
|
|
2654 <li> |
|
|
|
2655 <p>similarly, there is a super VOA, the <em><a class='existingWikiWord' href='/nlab/show/Monster+vertex+operator+algebra'>Monster vertex operator algebra</a></em>, whose <a class='existingWikiWord' href='/nlab/show/automorphism'>group of</a> of <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of a VOA</a> is the <a class='existingWikiWord' href='/nlab/show/Monster+group'>monster group</a></p> |
|
|
|
2656 |
|
|
|
2657 <p>(<a href='#FrenkelLepowskiMeurman89'>Frenkel-Lepowski-Meurman 89</a>, <a href='#GriessLam11'>Griess-Lam 11</a>)</p> |
|
|
|
2658 </li> |
|
|
|
2659 </ul> |
|
|
|
2660 |
|
|
|
2661 <h2 id='related_concepts'>Related concepts</h2> |
|
|
|
2662 |
|
|
|
2663 <ul> |
|
|
|
2664 <li> |
|
|
|
2665 <p><a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster</a></p> |
|
|
|
2666 </li> |
|
|
|
2667 |
|
|
|
2668 <li> |
|
|
|
2669 <p>moonshine</p> |
|
|
|
2670 |
|
|
|
2671 <ul> |
|
|
|
2672 <li> |
|
|
|
2673 <p><a class='existingWikiWord' href='/nlab/show/Mathieu+moonshine'>Mathieu moonshine</a></p> |
|
|
|
2674 </li> |
|
|
|
2675 |
|
|
|
2676 <li> |
|
|
|
2677 <p><a class='existingWikiWord' href='/nlab/show/umbral+moonshine'>umbral moonshine</a></p> |
|
|
|
2678 </li> |
|
|
|
2679 |
|
|
|
2680 <li> |
|
|
|
2681 <p><a class='existingWikiWord' href='/nlab/show/O%27Nan+moonshine'>O'Nan moonshine</a></p> |
|
|
|
2682 </li> |
|
|
|
2683 </ul> |
|
|
|
2684 </li> |
|
|
|
2685 |
|
|
|
2686 <li> |
|
|
|
2687 <p><a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphism of a vertex operator algebra</a></p> |
|
|
|
2688 </li> |
|
|
|
2689 </ul> |
|
|
|
2690 |
|
|
|
2691 <h2 id='references'>References</h2> |
|
|
|
2692 |
|
|
|
2693 <h3 id='general'>General</h3> |
|
|
|
2694 |
|
|
|
2695 <ul> |
|
|
|
2696 <li> |
|
|
|
2697 <p><a class='existingWikiWord' href='/nlab/show/Richard+Borcherds'>Richard Borcherds</a>, <em>What is Moonshine?, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998).</em>Doc. Math._ 1998, Extra Vol. I, 607–615 (electronic). <a href='http://www.ams.org/mathscinet-getitem?mr=1660657'>MR1660657</a> <a href='http://arxiv.org/abs/math/9809110'>arXiv:math/9809110v1</a> [math.QA]</p> |
|
|
|
2698 </li> |
|
|
|
2699 |
|
|
|
2700 <li> |
|
|
|
2701 <p>John F. R. Duncan, Michael J. Griffin, Ken Ono, <em>Moonshine</em> (<a href='http://arxiv.org/abs/1411.6571'>arXiv:1411.6571</a>)</p> |
|
|
|
2702 </li> |
|
|
|
2703 |
|
|
|
2704 <li id='GriessLam11'> |
|
|
|
2705 <p><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a> Jr., Ching Hung Lam, <em>A new existence proof of the Monster by VOA theory</em> (<a href='https://arxiv.org/abs/1103.1414'>arXiv:1103.1414</a>)</p> |
|
|
|
2706 </li> |
|
|
|
2707 |
|
|
|
2708 <li id='FrenkelLepowskiMeurman89'> |
|
|
|
2709 <p><a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a>, Arne Meurman, <em>Vertex operator algebras and the monster</em>, Pure and Applied Mathematics <strong>134</strong>, Academic Press, New York 1989. liv+508 pp. <a href='http://www.ams.org/mathscinet-getitem?mr=996026'>MR0996026</a></p> |
|
|
|
2710 </li> |
|
|
|
2711 |
|
|
|
2712 <li> |
|
|
|
2713 <p><a class='existingWikiWord' href='/nlab/show/Terry+Gannon'>Terry Gannon</a>, <em>Monstrous moonshine: the first twenty-five years</em>, <em>Bull. London Math. Soc.</em> <strong>38</strong> (2006), no. 1, 1–33. <a href='http://www.ams.org/mathscinet-getitem?mr=2201600'>MR2201600</a> <a href='http://arxiv.org/abs/math/0402345'>arXiv:math/0402345</a> [math.QA]</p> |
|
|
|
2714 </li> |
|
|
|
2715 |
|
|
|
2716 <li> |
|
|
|
2717 <p><a class='existingWikiWord' href='/nlab/show/Terry+Gannon'>Terry Gannon</a>, <em>Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics</em>, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, Massachusetts 2006. <a href='http://www.ams.org/mathscinet-getitem?mr=2257727'>MR2257727</a></p> |
|
|
|
2718 </li> |
|
|
|
2719 |
|
|
|
2720 <li> |
|
|
|
2721 <p>Koichiro Harada, <em>“Moonshine” of finite groups</em>. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2010. viii+76 pp. <a href='http://www.ams.org/mathscinet-getitem?mr=2722318'>MR2722318</a></p> |
|
|
|
2722 </li> |
|
|
|
2723 |
|
|
|
2724 <li> |
|
|
|
2725 <p>Griess, Robert L., Jr.; Lam, Ching Hung <em>A moonshine path from E8 to the Monster</em>, J. Pure Appl. Algebra_ 215 (2011), no. 5, 927–948 <a href='http://www.ams.org/mathscinet-getitem?mr=2747229'>MR2747229</a> <a href='http://arxiv.org/abs/0910.2057v2'>arXiv:0910.2057v2</a> [math.GR]</p> |
|
|
|
2726 </li> |
|
|
|
2727 |
|
|
|
2728 <li> |
|
|
|
2729 <p>Jae-Hyun Yang “Kac-Moody algebras, the Monstrous Moonshine, Jacobi forms and infinite products.” <em>Number theory, geometry and related topics</em> (Iksan City, 1995), 13–82, Pyungsan Inst. Math. Sci., Seoul, 1996. <a href='http://www.ams.org/mathscinet-getitem?mr=1404967'>MR1404967</a> <a href='http://arxiv.org/abs/math/0612474'>arXiv:math/0612474v2</a> [math.NT]</p> |
|
|
|
2730 </li> |
|
|
|
2731 |
|
|
|
2732 <li> |
|
|
|
2733 <p>Vassilis Anagiannis, <a class='existingWikiWord' href='/nlab/show/Miranda+Cheng'>Miranda Cheng</a>, <em>TASI Lectures on Moonshine</em> (<a href='https://arxiv.org/abs/1807.00723'>arXiv:1807.00723</a>)</p> |
|
|
|
2734 </li> |
|
|
|
2735 </ul> |
|
|
|
2736 |
|
|
|
2737 <h3 id='historical_references'>Historical References</h3> |
|
|
|
2738 |
|
|
|
2739 <ul> |
|
|
|
2740 <li> |
|
|
|
2741 <p><a class='existingWikiWord' href='/nlab/show/John+Horton+Conway'>John Conway</a> and Simon Norton, “Monstrous moonshine.” <em>Bull. London Math. Soc.</em> <strong>11</strong> (1979), no. 3, 308–339; <a href='http://www.ams.org/mathscinet-getitem?mr=554399'>MR0554399</a> (81j:20028)</p> |
|
|
|
2742 </li> |
|
|
|
2743 |
|
|
|
2744 <li id='FrenkelLepowskiMeurman89'> |
|
|
|
2745 <p><a class='existingWikiWord' href='/nlab/show/Igor+Frenkel'>Igor Frenkel</a>, <a class='existingWikiWord' href='/nlab/show/James+Lepowsky'>James Lepowsky</a>, Arne Meurman, “A natural representation of the Fischer-Griess Monster with the modular function <math class='maruku-mathml' display='inline' id='mathml_5fa857844ec088dd2601ac2b4c1e27b3d0f3ef74_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>J</mi></mrow><annotation encoding='application/x-tex'>J</annotation></semantics></math> as character.” <em>Proc. Nat. Acad. Sci. U.S.A.</em> <strong>81</strong> (1984), no. 10, Phys. Sci., 3256–3260. <a href='http://www.ams.org/mathscinet-getitem?mr=747596'>MR0747596</a> (85e:20018)</p> |
|
|
|
2746 </li> |
|
|
|
2747 |
|
|
|
2748 <li> |
|
|
|
2749 <p><a class='existingWikiWord' href='/nlab/show/Robert+Griess'>Robert Griess</a>, “The friendly giant.” <em>Invent. Math.</em> <strong>69</strong> (1982), no. 1, 1–102. <a href='http://www.ams.org/mathscinet-getitem?mr=671653'>MR671653</a> (84m:20024)</p> |
|
|
|
2750 </li> |
|
|
|
2751 |
|
|
|
2752 <li> |
|
|
|
2753 <p>John G. Thompson, “Some numerology between the Fischer-Griess Monster and the elliptic modular function.” <em>Bull. London Math. Soc.</em> <strong>11</strong> (1979), no. 3, 352–353. <a href='http://www.ams.org/mathscinet-getitem?mr=554402'>MR0554402</a> (81j:20030)</p> |
|
|
|
2754 </li> |
|
|
|
2755 </ul> |
|
|
|
2756 |
|
|
|
2757 <h3 id='FurtherDevelomentsReferences'>Further developments</h3> |
|
|
|
2758 |
|
|
|
2759 <ul> |
|
|
|
2760 <li> |
|
|
|
2761 <p><a class='existingWikiWord' href='/nlab/show/Miranda+Cheng'>Miranda Cheng</a>, John F. R. Duncan, Jeffrey A. Harvey, <em>Umbral Moonshine</em> (<a href='http://arxiv.org/abs/1204.2779'>arXiv:1204.2779</a>)</p> |
|
|
|
2762 </li> |
|
|
|
2763 |
|
|
|
2764 <li> |
|
|
|
2765 <p>John F. R. Duncan, Michael J. Griffin and Ken Ono, <em>Proof of the Umbral Moonshine Conjecture</em> (<a href='http://arxiv.org/abs/1503.01472'>arXiv:1503.01472</a>)</p> |
|
|
|
2766 </li> |
|
|
|
2767 |
|
|
|
2768 <li> |
|
|
|
2769 <p><a class='existingWikiWord' href='/nlab/show/Scott+Carnahan'>Scott Carnahan</a>, <em>Monstrous Moonshine over Z?</em> (<a href='https://arxiv.org/abs/1804.04161'>arXiv:1804.04161</a>)</p> |
|
|
|
2770 </li> |
|
|
|
2771 </ul> |
|
|
|
2772 |
|
|
|
2773 <h3 id='realization_in_superstring_theory'>Realization in superstring theory</h3> |
|
|
|
2774 |
|
|
|
2775 <p>Discussion of possible realizations in <a class='existingWikiWord' href='/nlab/show/string+theory'>superstring theory</a> (specifically <a class='existingWikiWord' href='/nlab/show/heterotic+string+theory'>heterotic string theory</a> and <a class='existingWikiWord' href='/nlab/show/type+II+string+theory'>type II string theory</a> in <a class='existingWikiWord' href='/nlab/show/K3+surface'>K3-surfaces</a>, see <a class='existingWikiWord' href='/nlab/show/duality+between+heterotic+and+type+II+string+theory'>HET - II</a>) via <a class='existingWikiWord' href='/nlab/show/automorphism+of+a+vertex+operator+algebra'>automorphisms of super vertex operator algebras</a>:</p> |
|
|
|
2776 |
|
|
|
2777 <ul> |
|
|
|
2778 <li> |
|
|
|
2779 <p>S. Chaudhuri, D.A. Lowe, <em>Monstrous String-String Duality</em>, Nucl. Phys. B469 : 21-36, 1996 (<a href='https://arxiv.org/abs/hep-th/9512226'>arXiv:hep-th/9512226</a>)</p> |
|
|
|
2780 </li> |
|
|
|
2781 |
|
|
|
2782 <li id='Duncan05'> |
|
|
|
2783 <p>John F. Duncan, <em>Super-moonshine for Conway’s largest sporadic group</em> (<a href='https://arxiv.org/abs/math/0502267'>arXiv:math/0502267</a>)</p> |
|
|
|
2784 </li> |
|
|
|
2785 |
|
|
|
2786 <li id='PaquettePerssonVolpato16'> |
|
|
|
2787 <p><a class='existingWikiWord' href='/nlab/show/Natalie+Paquette'>Natalie Paquette</a>, Daniel Persson, Roberto Volpato, <em>Monstrous BPS-Algebras and the Superstring Origin of Moonshine</em> (<a href='http://arxiv.org/abs/1601.05412'>arXiv:1601.05412</a>)</p> |
|
|
|
2788 </li> |
|
|
|
2789 |
|
|
|
2790 <li id='KachruPaquetteVolpato16'> |
|
|
|
2791 <p><a class='existingWikiWord' href='/nlab/show/Shamit+Kachru'>Shamit Kachru</a>, <a class='existingWikiWord' href='/nlab/show/Natalie+Paquette'>Natalie Paquette</a>, Roberto Volpato, <em>3D String Theory and Umbral Moonshine</em> (<a href='http://arxiv.org/abs/1603.07330'>arXiv:1603.07330</a>)</p> |
|
|
|
2792 </li> |
|
|
|
2793 |
|
|
|
2794 <li id='PaquettePerssonVolpato17'> |
|
|
|
2795 <p><a class='existingWikiWord' href='/nlab/show/Natalie+Paquette'>Natalie Paquette</a>, Daniel Persson, Roberto Volpato, <em>BPS Algebras, Genus Zero, and the Heterotic Monster</em> (<a href='https://arxiv.org/abs/1701.05169'>arXiv:1701.05169</a>)</p> |
|
|
|
2796 </li> |
|
|
|
2797 |
|
|
|
2798 <li> |
|
|
|
2799 <p><a class='existingWikiWord' href='/nlab/show/Shamit+Kachru'>Shamit Kachru</a>, Arnav Tripathy, <em>The hidden symmetry of the heterotic string</em> (<a href='https://arxiv.org/abs/1702.02572'>arXiv:1702.02572</a>)</p> |
|
|
|
2800 </li> |
|
|
|
2801 </ul> |
|
|
|
2802 |
|
|
|
2803 <p>Specifically in relation to <a class='existingWikiWord' href='/nlab/show/Kaluza-Klein+mechanism'>KK-compactifications</a> of <a class='existingWikiWord' href='/nlab/show/string+theory'>string theory</a> on <a class='existingWikiWord' href='/nlab/show/K3+surface'>K3-surfaces</a> (<a class='existingWikiWord' href='/nlab/show/duality+between+heterotic+and+type+II+string+theory'>duality between heterotic and type II string theory</a>)</p> |
|
|
|
2804 |
|
|
|
2805 <ul> |
|
|
|
2806 <li id='ChengHarrisonVolpatoZimet16'><a class='existingWikiWord' href='/nlab/show/Miranda+Cheng'>Miranda Cheng</a>, Sarah M. Harrison, Roberto Volpato, Max Zimet, <em>K3 String Theory, Lattices and Moonshine</em> (<a href='https://arxiv.org/abs/1612.04404'>arXiv:1612.04404</a>, <a href='https://doi.org/10.1007/s40687-018-0150-4'>doi:10.1007/s40687-018-0150-4</a>)</li> |
|
|
|
2807 </ul> |
|
|
|
2808 |
|
|
|
2809 <p>Possible relation to <a class='existingWikiWord' href='/nlab/show/bosonic+M-theory'>bosonic M-theory</a>:</p> |
|
|
|
2810 |
|
|
|
2811 <ul> |
|
|
|
2812 <li><a class='existingWikiWord' href='/nlab/show/Alessio+Marrani'>Alessio Marrani</a>, <a class='existingWikiWord' href='/nlab/show/Michael+Rios'>Michael Rios</a>, <a class='existingWikiWord' href='/nlab/show/David+Chester'>David Chester</a>, <em>Monstrous M-theory</em> (<a href='https://arxiv.org/abs/2008.06742'>arXiv:2008.06742</a>)</li> |
|
|
|
2813 </ul> |
|
|
|
2814 |
|
|
|
2815 <p> |
|
|
|
2816 |
|
|
|
2817 </p> |
|
|
|
2818 |
|
|
|
2819 <p> |
|
|
|
2820 |
|
|
|
2821 </p> |
|
|
|
2822 |
|
|
|
2823 <p> |
|
|
|
2824 |
|
|
|
2825 </p> </div> |
|
|
|
2826 </content> |
|
|
|
2827 </entry> |
|
|
|
2828 <entry> |
|
|
|
2829 <title type="html">geometric realization of categories</title> |
|
|
|
2830 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/geometric+realization+of+categories"/> |
|
|
|
2831 <updated>2021-07-01T17:07:36Z</updated> |
|
|
|
2832 <published>2011-05-30T18:19:35Z</published> |
|
|
|
2833 <id>tag:ncatlab.org,2011-05-30:nLab,geometric+realization+of+categories</id> |
|
|
|
2834 <author> |
|
|
|
2835 <name>Dmitri Pavlov</name> |
|
|
|
2836 </author> |
|
|
|
2837 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/geometric+realization+of+categories"> |
|
|
|
2838 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
2839 <div class='rightHandSide'> |
|
|
|
2840 <div class='toc clickDown' tabindex='0'> |
|
|
|
2841 <h3 id='context'>Context</h3> |
|
|
|
2842 |
|
|
|
2843 <h4 id='homotopy_theory'>Homotopy theory</h4> |
|
|
|
2844 |
|
|
|
2845 <div class='hide'> |
|
|
|
2846 <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p> |
|
|
|
2847 |
|
|
|
2848 <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p> |
|
|
|
2849 |
|
|
|
2850 <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p> |
|
|
|
2851 |
|
|
|
2852 <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p> |
|
|
|
2853 |
|
|
|
2854 <p><strong>Introductions</strong></p> |
|
|
|
2855 |
|
|
|
2856 <ul> |
|
|
|
2857 <li> |
|
|
|
2858 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p> |
|
|
|
2859 </li> |
|
|
|
2860 |
|
|
|
2861 <li> |
|
|
|
2862 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p> |
|
|
|
2863 </li> |
|
|
|
2864 |
|
|
|
2865 <li> |
|
|
|
2866 <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p> |
|
|
|
2867 </li> |
|
|
|
2868 </ul> |
|
|
|
2869 |
|
|
|
2870 <p><strong>Definitions</strong></p> |
|
|
|
2871 |
|
|
|
2872 <ul> |
|
|
|
2873 <li> |
|
|
|
2874 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p> |
|
|
|
2875 </li> |
|
|
|
2876 |
|
|
|
2877 <li> |
|
|
|
2878 <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p> |
|
|
|
2879 </li> |
|
|
|
2880 |
|
|
|
2881 <li> |
|
|
|
2882 <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p> |
|
|
|
2883 </li> |
|
|
|
2884 |
|
|
|
2885 <li> |
|
|
|
2886 <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p> |
|
|
|
2887 |
|
|
|
2888 <ul> |
|
|
|
2889 <li> |
|
|
|
2890 <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p> |
|
|
|
2891 |
|
|
|
2892 <ul> |
|
|
|
2893 <li> |
|
|
|
2894 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p> |
|
|
|
2895 </li> |
|
|
|
2896 |
|
|
|
2897 <li> |
|
|
|
2898 <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p> |
|
|
|
2899 </li> |
|
|
|
2900 |
|
|
|
2901 <li> |
|
|
|
2902 <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p> |
|
|
|
2903 </li> |
|
|
|
2904 </ul> |
|
|
|
2905 </li> |
|
|
|
2906 |
|
|
|
2907 <li> |
|
|
|
2908 <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p> |
|
|
|
2909 |
|
|
|
2910 <ul> |
|
|
|
2911 <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li> |
|
|
|
2912 </ul> |
|
|
|
2913 </li> |
|
|
|
2914 </ul> |
|
|
|
2915 </li> |
|
|
|
2916 |
|
|
|
2917 <li> |
|
|
|
2918 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> |
|
|
|
2919 |
|
|
|
2920 <ul> |
|
|
|
2921 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li> |
|
|
|
2922 </ul> |
|
|
|
2923 </li> |
|
|
|
2924 </ul> |
|
|
|
2925 |
|
|
|
2926 <p><strong>Paths and cylinders</strong></p> |
|
|
|
2927 |
|
|
|
2928 <ul> |
|
|
|
2929 <li> |
|
|
|
2930 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p> |
|
|
|
2931 |
|
|
|
2932 <ul> |
|
|
|
2933 <li> |
|
|
|
2934 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p> |
|
|
|
2935 </li> |
|
|
|
2936 |
|
|
|
2937 <li> |
|
|
|
2938 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p> |
|
|
|
2939 </li> |
|
|
|
2940 </ul> |
|
|
|
2941 </li> |
|
|
|
2942 |
|
|
|
2943 <li> |
|
|
|
2944 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p> |
|
|
|
2945 |
|
|
|
2946 <ul> |
|
|
|
2947 <li> |
|
|
|
2948 <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p> |
|
|
|
2949 </li> |
|
|
|
2950 |
|
|
|
2951 <li> |
|
|
|
2952 <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p> |
|
|
|
2953 </li> |
|
|
|
2954 |
|
|
|
2955 <li> |
|
|
|
2956 <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p> |
|
|
|
2957 </li> |
|
|
|
2958 </ul> |
|
|
|
2959 </li> |
|
|
|
2960 |
|
|
|
2961 <li> |
|
|
|
2962 <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p> |
|
|
|
2963 |
|
|
|
2964 <ul> |
|
|
|
2965 <li> |
|
|
|
2966 <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p> |
|
|
|
2967 </li> |
|
|
|
2968 |
|
|
|
2969 <li> |
|
|
|
2970 <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p> |
|
|
|
2971 </li> |
|
|
|
2972 </ul> |
|
|
|
2973 </li> |
|
|
|
2974 </ul> |
|
|
|
2975 |
|
|
|
2976 <p><strong>Homotopy groups</strong></p> |
|
|
|
2977 |
|
|
|
2978 <ul> |
|
|
|
2979 <li> |
|
|
|
2980 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p> |
|
|
|
2981 |
|
|
|
2982 <ul> |
|
|
|
2983 <li> |
|
|
|
2984 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p> |
|
|
|
2985 |
|
|
|
2986 <ul> |
|
|
|
2987 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li> |
|
|
|
2988 </ul> |
|
|
|
2989 </li> |
|
|
|
2990 |
|
|
|
2991 <li> |
|
|
|
2992 <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p> |
|
|
|
2993 </li> |
|
|
|
2994 |
|
|
|
2995 <li> |
|
|
|
2996 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p> |
|
|
|
2997 </li> |
|
|
|
2998 |
|
|
|
2999 <li> |
|
|
|
3000 <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p> |
|
|
|
3001 </li> |
|
|
|
3002 </ul> |
|
|
|
3003 </li> |
|
|
|
3004 |
|
|
|
3005 <li> |
|
|
|
3006 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p> |
|
|
|
3007 |
|
|
|
3008 <ul> |
|
|
|
3009 <li> |
|
|
|
3010 <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p> |
|
|
|
3011 |
|
|
|
3012 <ul> |
|
|
|
3013 <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li> |
|
|
|
3014 </ul> |
|
|
|
3015 </li> |
|
|
|
3016 |
|
|
|
3017 <li> |
|
|
|
3018 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
3019 </li> |
|
|
|
3020 |
|
|
|
3021 <li> |
|
|
|
3022 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
3023 </li> |
|
|
|
3024 </ul> |
|
|
|
3025 </li> |
|
|
|
3026 |
|
|
|
3027 <li> |
|
|
|
3028 <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p> |
|
|
|
3029 |
|
|
|
3030 <ul> |
|
|
|
3031 <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li> |
|
|
|
3032 </ul> |
|
|
|
3033 </li> |
|
|
|
3034 </ul> |
|
|
|
3035 |
|
|
|
3036 <p><strong>Basic facts</strong></p> |
|
|
|
3037 |
|
|
|
3038 <ul> |
|
|
|
3039 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li> |
|
|
|
3040 </ul> |
|
|
|
3041 |
|
|
|
3042 <p><strong>Theorems</strong></p> |
|
|
|
3043 |
|
|
|
3044 <ul> |
|
|
|
3045 <li> |
|
|
|
3046 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> |
|
|
|
3047 </li> |
|
|
|
3048 |
|
|
|
3049 <li> |
|
|
|
3050 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> |
|
|
|
3051 </li> |
|
|
|
3052 |
|
|
|
3053 <li> |
|
|
|
3054 <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p> |
|
|
|
3055 </li> |
|
|
|
3056 |
|
|
|
3057 <li> |
|
|
|
3058 <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p> |
|
|
|
3059 </li> |
|
|
|
3060 |
|
|
|
3061 <li> |
|
|
|
3062 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p> |
|
|
|
3063 </li> |
|
|
|
3064 |
|
|
|
3065 <li> |
|
|
|
3066 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead's theorem</a></p> |
|
|
|
3067 </li> |
|
|
|
3068 |
|
|
|
3069 <li> |
|
|
|
3070 <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p> |
|
|
|
3071 </li> |
|
|
|
3072 |
|
|
|
3073 <li> |
|
|
|
3074 <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p> |
|
|
|
3075 </li> |
|
|
|
3076 |
|
|
|
3077 <li> |
|
|
|
3078 <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p> |
|
|
|
3079 </li> |
|
|
|
3080 </ul> |
|
|
|
3081 </div> |
|
|
|
3082 |
|
|
|
3083 <h4 id='category_theory'>Category theory</h4> |
|
|
|
3084 |
|
|
|
3085 <div class='hide'> |
|
|
|
3086 <p><strong><a class='existingWikiWord' href='/nlab/show/category+theory'>category theory</a></strong></p> |
|
|
|
3087 |
|
|
|
3088 <h2 id='concepts'>Concepts</h2> |
|
|
|
3089 |
|
|
|
3090 <ul> |
|
|
|
3091 <li> |
|
|
|
3092 <p><a class='existingWikiWord' href='/nlab/show/category'>category</a></p> |
|
|
|
3093 </li> |
|
|
|
3094 |
|
|
|
3095 <li> |
|
|
|
3096 <p><a class='existingWikiWord' href='/nlab/show/functor'>functor</a></p> |
|
|
|
3097 </li> |
|
|
|
3098 |
|
|
|
3099 <li> |
|
|
|
3100 <p><a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a></p> |
|
|
|
3101 </li> |
|
|
|
3102 |
|
|
|
3103 <li> |
|
|
|
3104 <p><a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a></p> |
|
|
|
3105 </li> |
|
|
|
3106 </ul> |
|
|
|
3107 |
|
|
|
3108 <h2 id='universal_constructions'>Universal constructions</h2> |
|
|
|
3109 |
|
|
|
3110 <ul> |
|
|
|
3111 <li> |
|
|
|
3112 <p><a class='existingWikiWord' href='/nlab/show/universal+construction'>universal construction</a></p> |
|
|
|
3113 |
|
|
|
3114 <ul> |
|
|
|
3115 <li> |
|
|
|
3116 <p><a class='existingWikiWord' href='/nlab/show/representable+functor'>representable functor</a></p> |
|
|
|
3117 </li> |
|
|
|
3118 |
|
|
|
3119 <li> |
|
|
|
3120 <p><a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functor</a></p> |
|
|
|
3121 </li> |
|
|
|
3122 |
|
|
|
3123 <li> |
|
|
|
3124 <p><a class='existingWikiWord' href='/nlab/show/limit'>limit</a>/<a class='existingWikiWord' href='/nlab/show/colimit'>colimit</a></p> |
|
|
|
3125 </li> |
|
|
|
3126 |
|
|
|
3127 <li> |
|
|
|
3128 <p><a class='existingWikiWord' href='/nlab/show/weighted+limit'>weighted limit</a></p> |
|
|
|
3129 </li> |
|
|
|
3130 |
|
|
|
3131 <li> |
|
|
|
3132 <p><a class='existingWikiWord' href='/nlab/show/end'>end</a>/<a class='existingWikiWord' href='/nlab/show/end'>coend</a></p> |
|
|
|
3133 </li> |
|
|
|
3134 |
|
|
|
3135 <li> |
|
|
|
3136 <p><a class='existingWikiWord' href='/nlab/show/Kan+extension'>Kan extension</a></p> |
|
|
|
3137 </li> |
|
|
|
3138 </ul> |
|
|
|
3139 </li> |
|
|
|
3140 </ul> |
|
|
|
3141 |
|
|
|
3142 <h2 id='theorems'>Theorems</h2> |
|
|
|
3143 |
|
|
|
3144 <ul> |
|
|
|
3145 <li> |
|
|
|
3146 <p><a class='existingWikiWord' href='/nlab/show/Yoneda+lemma'>Yoneda lemma</a></p> |
|
|
|
3147 </li> |
|
|
|
3148 |
|
|
|
3149 <li> |
|
|
|
3150 <p><a class='existingWikiWord' href='/nlab/show/Isbell+duality'>Isbell duality</a></p> |
|
|
|
3151 </li> |
|
|
|
3152 |
|
|
|
3153 <li> |
|
|
|
3154 <p><a class='existingWikiWord' href='/nlab/show/Grothendieck+construction'>Grothendieck construction</a></p> |
|
|
|
3155 </li> |
|
|
|
3156 |
|
|
|
3157 <li> |
|
|
|
3158 <p><a class='existingWikiWord' href='/nlab/show/adjoint+functor+theorem'>adjoint functor theorem</a></p> |
|
|
|
3159 </li> |
|
|
|
3160 |
|
|
|
3161 <li> |
|
|
|
3162 <p><a class='existingWikiWord' href='/nlab/show/monadicity+theorem'>monadicity theorem</a></p> |
|
|
|
3163 </li> |
|
|
|
3164 |
|
|
|
3165 <li> |
|
|
|
3166 <p><a class='existingWikiWord' href='/nlab/show/adjoint+lifting+theorem'>adjoint lifting theorem</a></p> |
|
|
|
3167 </li> |
|
|
|
3168 |
|
|
|
3169 <li> |
|
|
|
3170 <p><a class='existingWikiWord' href='/nlab/show/Tannaka+duality'>Tannaka duality</a></p> |
|
|
|
3171 </li> |
|
|
|
3172 |
|
|
|
3173 <li> |
|
|
|
3174 <p><a class='existingWikiWord' href='/nlab/show/Gabriel-Ulmer+duality'>Gabriel-Ulmer duality</a></p> |
|
|
|
3175 </li> |
|
|
|
3176 |
|
|
|
3177 <li> |
|
|
|
3178 <p><a class='existingWikiWord' href='/nlab/show/small+object+argument'>small object argument</a></p> |
|
|
|
3179 </li> |
|
|
|
3180 |
|
|
|
3181 <li> |
|
|
|
3182 <p><a class='existingWikiWord' href='/nlab/show/Freyd-Mitchell+embedding+theorem'>Freyd-Mitchell embedding theorem</a></p> |
|
|
|
3183 </li> |
|
|
|
3184 |
|
|
|
3185 <li> |
|
|
|
3186 <p><a class='existingWikiWord' href='/nlab/show/relation+between+type+theory+and+category+theory'>relation between type theory and category theory</a></p> |
|
|
|
3187 </li> |
|
|
|
3188 </ul> |
|
|
|
3189 |
|
|
|
3190 <h2 id='extensions'>Extensions</h2> |
|
|
|
3191 |
|
|
|
3192 <ul> |
|
|
|
3193 <li> |
|
|
|
3194 <p><a class='existingWikiWord' href='/nlab/show/sheaf+and+topos+theory'>sheaf and topos theory</a></p> |
|
|
|
3195 </li> |
|
|
|
3196 |
|
|
|
3197 <li> |
|
|
|
3198 <p><a class='existingWikiWord' href='/nlab/show/enriched+category+theory'>enriched category theory</a></p> |
|
|
|
3199 </li> |
|
|
|
3200 |
|
|
|
3201 <li> |
|
|
|
3202 <p><a class='existingWikiWord' href='/nlab/show/higher+category+theory'>higher category theory</a></p> |
|
|
|
3203 </li> |
|
|
|
3204 </ul> |
|
|
|
3205 |
|
|
|
3206 <h2 id='applications'>Applications</h2> |
|
|
|
3207 |
|
|
|
3208 <ul> |
|
|
|
3209 <li><a class='existingWikiWord' href='/nlab/show/applications+of+%28higher%29+category+theory'>applications of (higher) category theory</a></li> |
|
|
|
3210 </ul> |
|
|
|
3211 <div> |
|
|
|
3212 <p> |
|
|
|
3213 <a href='/nlab/edit/category+theory+-+contents'>Edit this sidebar</a> |
|
|
|
3214 </p> |
|
|
|
3215 </div></div> |
|
|
|
3216 </div> |
|
|
|
3217 </div> |
|
|
|
3218 |
|
|
|
3219 <h1 id='contents'>Contents</h1> |
|
|
|
3220 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#ThomasonModelStructure'>Thomason model structure</a></li><li><a href='#recognizing_weak_equivalences_quillens_theorem_a_and_b'>Recognizing weak equivalences: Quillen’s theorem A and B</a></li><li><a href='#natural_transformations_and_homotopies'>Natural transformations and homotopies</a></li><li><a href='#behaviour_under_homotopy_colimits'>Behaviour under homotopy colimits</a></li></ul></li><li><a href='#related_concepts'>Related concepts</a></li><li><a href='#references'>References</a><ul><li><a href='#general'>General</a></li><li><a href='#quillens_theorems_a_and_b'>Quillen’s theorems A and B</a></li></ul></li></ul></div> |
|
|
|
3221 <h2 id='idea'>Idea</h2> |
|
|
|
3222 |
|
|
|
3223 <p>What is called <em>geometric realization of categories</em> is a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a> that sends <a class='existingWikiWord' href='/nlab/show/category'>categories</a> to <a class='existingWikiWord' href='/nlab/show/topological+space'>topological spaces</a>, namely the functor which first forms the <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(\mathcal{C})</annotation></semantics></math> that is the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> of the category <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math>, and then forms the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(\mathcal{C})\vert}</annotation></semantics></math> of this simplical set. Typically one is interested in this geometric realization up to <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a>.</p> |
|
|
|
3224 |
|
|
|
3225 <p>By the <a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> of simplicial sets constitutes a (<a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen</a>)<a class='existingWikiWord' href='/nlab/show/equivalence+of+%28infinity%2C1%29-categories'>equivalence</a> between the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical homotopy theory of simiplicial sets</a> and the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical homotopy theory of topological spaces</a>. This means that inasmuch as one is interested in geometric realization of categories up to weak homotopy equivalence, then the key part of the operation is in forming the simplicial nerve <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(\mathcal{C})</annotation></semantics></math> of a category, with the latter regarded as a model for an <a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>∞-groupoid</a>. Indeed, equivalently one could consider the <a class='existingWikiWord' href='/nlab/show/Kan+fibrant+replacement'>Kan fibrant replacement</a> of the nerve <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>N(\mathcal{C})</annotation></semantics></math> (which still has the same geometric realization, up to weak homotopy equivalence).</p> |
|
|
|
3226 |
|
|
|
3227 <p>Therefore an equivalent perspective on geometric realization of categories is that it universally turns a category into an <a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>infinity-groupoid</a> by freely turning all its morphisms into <a class='existingWikiWord' href='/nlab/show/equivalence+in+an+%28infinity%2C1%29-category'>homotopy equivalences</a>.</p> |
|
|
|
3228 |
|
|
|
3229 <p>Geometric realization of categories has various good properties:</p> |
|
|
|
3230 |
|
|
|
3231 <p>It sends <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalences of categories</a> to <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a> (corollary <a class='maruku-ref' href='#RealizationOfEquivalenceIsHomotopyEquivalence'>1</a> below). A more general sufficient criterion for the geometric realization of a functor is given by the seminal theorem known as <em>Quillen’s theorem A</em> (theorem <a class='maruku-ref' href='#QuillenTheoremA'>1</a> below.)</p> |
|
|
|
3232 |
|
|
|
3233 <p>The existence of the <a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a> (<a href='#ThomasonModelStructure'>below</a>) implies that every <a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a> arises as the geometric realization of some category. In fact it already arises as the geometric realization of some <a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a> (<a class='existingWikiWord' href='/nlab/show/%280%2C1%29-category'>(0,1)-category</a>).</p> |
|
|
|
3234 |
|
|
|
3235 <h2 id='definition'>Definition</h2> |
|
|
|
3236 |
|
|
|
3237 <p>Write</p> |
|
|
|
3238 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo lspace='verythinmathspace'>:</mo><mi>Cat</mi><mo>→</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
3239 N \colon Cat \to sSet |
|
|
|
3240 |
|
|
|
3241 </annotation></semantics></math></div> |
|
|
|
3242 <p>for the <a href='nerve#NerveOfACategory'>nerve functor</a> from <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a> to <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>. Write</p> |
|
|
|
3243 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mo>−</mo><mo stretchy='false'>|</mo></mrow><mo>:</mo><mi>sSet</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
3244 {\vert - \vert} : sSet \to Top |
|
|
|
3245 |
|
|
|
3246 </annotation></semantics></math></div> |
|
|
|
3247 <p>for the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> from <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a> to <a class='existingWikiWord' href='/nlab/show/Top'>Top</a>.</p> |
|
|
|
3248 |
|
|
|
3249 <p>The <em>geometric realization of categories</em> is the <a class='existingWikiWord' href='/nlab/show/composition'>composite</a> of these two operations:</p> |
|
|
|
3250 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mo>−</mo><mo stretchy='false'>|</mo></mrow><mo>≔</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>Cat</mi><mo>→</mo><mi>Top</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
3251 {\vert - \vert} \coloneqq {\vert N(-)\vert} \;\colon\; Cat \to Top |
|
|
|
3252 |
|
|
|
3253 </annotation></semantics></math></div> |
|
|
|
3254 <h2 id='properties'>Properties</h2> |
|
|
|
3255 |
|
|
|
3256 <h3 id='ThomasonModelStructure'>Thomason model structure</h3> |
|
|
|
3257 |
|
|
|
3258 <p>There is a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure on <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a> whose weak equivalences are those <a class='existingWikiWord' href='/nlab/show/functor'>functors</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>F \colon \mathcal{C} \to \mathcal{D}</annotation></semantics></math> which under <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> become weak equivalences in the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure on topological spaces</a>, hence which become <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a>. This is called the <em><a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a></em>.</p> |
|
|
|
3259 |
|
|
|
3260 <p>The existence of the Thomas model structure implies that every <a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a> arises as the geometric realization of some category, in fact already as the realization of some <a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a>/<a class='existingWikiWord' href='/nlab/show/%280%2C1%29-category'>(0,1)-category</a>:</p> |
|
|
|
3261 |
|
|
|
3262 <div class='num_defn' id='PosetOfSimplicesInNerveOfCategory'> |
|
|
|
3263 <h6 id='definition_2'>Definition</h6> |
|
|
|
3264 |
|
|
|
3265 <p>For <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/category'>category</a>, let <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∇</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>\nabla C</annotation></semantics></math> be the <a class='existingWikiWord' href='/nlab/show/partial+order'>poset</a> of <a class='existingWikiWord' href='/nlab/show/simplex'>simplices</a> in the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mi>C</mi></mrow><annotation encoding='application/x-tex'>N C</annotation></semantics></math>, ordered by inclusion.</p> |
|
|
|
3266 </div> |
|
|
|
3267 |
|
|
|
3268 <div class='num_prop'> |
|
|
|
3269 <h6 id='proposition'>Proposition</h6> |
|
|
|
3270 |
|
|
|
3271 <p>For every category <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> the poset <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∇</mo><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\nabla \mathcal{C}</annotation></semantics></math> from def. <a class='maruku-ref' href='#PosetOfSimplicesInNerveOfCategory'>1</a> has <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weakly homotopy equivalent</a> geometric realization</p> |
|
|
|
3272 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo>∇</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><msub><mo>≃</mo> <mi>wh</mi></msub><mrow><mo stretchy='false'>|</mo><mi>𝒞</mi><mo stretchy='false'>|</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
3273 {\vert N(\nabla \mathcal{C}) \vert} \simeq_{wh} {\vert \mathcal{C} \vert} |
|
|
|
3274 \,. |
|
|
|
3275 |
|
|
|
3276 </annotation></semantics></math></div></div> |
|
|
|
3277 |
|
|
|
3278 <h3 id='recognizing_weak_equivalences_quillens_theorem_a_and_b'>Recognizing weak equivalences: Quillen’s theorem A and B</h3> |
|
|
|
3279 |
|
|
|
3280 <p>Let <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}, \mathcal{D}</annotation></semantics></math> be two <a class='existingWikiWord' href='/nlab/show/category'>categories</a> and let</p> |
|
|
|
3281 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒞</mi><mo>⟶</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
3282 F \;\colon\; \mathcal{C} \longrightarrow \mathcal{D} |
|
|
|
3283 |
|
|
|
3284 </annotation></semantics></math></div> |
|
|
|
3285 <p>be a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a> between them.</p> |
|
|
|
3286 |
|
|
|
3287 <div class='num_theorem' id='QuillenTheoremA'> |
|
|
|
3288 <h6 id='theorem'>Theorem</h6> |
|
|
|
3289 |
|
|
|
3290 <p><strong>(<a href='#Quillen72'>Quillen 72</a>, theorem A)</strong></p> |
|
|
|
3291 |
|
|
|
3292 <p>If for all <a class='existingWikiWord' href='/nlab/show/object'>objects</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>d \in \mathcal{D}</annotation></semantics></math> the <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>/</mo><mi>d</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F/d)\vert}</annotation></semantics></math> of the <a class='existingWikiWord' href='/nlab/show/comma+category'>comma category</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo stretchy='false'>/</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>F/d</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a> (meaning that <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math> is a “homotopy <a class='existingWikiWord' href='/nlab/show/final+functor'>cofinal functor</a>”, hence a <a class='existingWikiWord' href='/nlab/show/final+%28infinity%2C1%29-functor'>cofinal (∞,1)-functor</a>), then</p> |
|
|
|
3293 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒟</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
3294 {\vert N(F) \vert} |
|
|
|
3295 \;\colon\; |
|
|
|
3296 {\vert N(\mathcal{C}) \vert} |
|
|
|
3297 \longrightarrow |
|
|
|
3298 {\vert N(\mathcal{D}) \vert} |
|
|
|
3299 |
|
|
|
3300 </annotation></semantics></math></div> |
|
|
|
3301 <p>is a <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a>.</p> |
|
|
|
3302 </div> |
|
|
|
3303 |
|
|
|
3304 <div class='num_theorem' id='QuillenTheoremB'> |
|
|
|
3305 <h6 id='theorem_2'>Theorem</h6> |
|
|
|
3306 |
|
|
|
3307 <p><strong>(<a href='#Quillen72'>Quillen 72</a> theorem B)</strong></p> |
|
|
|
3308 |
|
|
|
3309 <p>If for all <a class='existingWikiWord' href='/nlab/show/object'>objects</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>d \in \mathcal{D}</annotation></semantics></math> we have that <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>/</mo><mi>d</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F/d)\vert}</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weakly homotopy equivalent</a> to a given <a class='existingWikiWord' href='/nlab/show/topological+space'>topological space</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> and all morphisms <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi><mo lspace='verythinmathspace'>:</mo><msub><mi>d</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>d</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>f \colon d_1 \to d_2</annotation></semantics></math> induce <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalences</a> between these, then <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/fiber+sequence'>homotopy fiber</a> of <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F) \vert}</annotation></semantics></math>, hence we have a <a class='existingWikiWord' href='/nlab/show/fiber+sequence'>homotopy fiber sequence</a> (in the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure on topological spaces</a>) of the form</p> |
|
|
|
3310 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mover><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mover><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒟</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
3311 X |
|
|
|
3312 \longrightarrow |
|
|
|
3313 {\vert N(\mathcal{C}) \vert} |
|
|
|
3314 \overset{\vert N(F) \vert }{\longrightarrow} |
|
|
|
3315 {\vert N(\mathcal{D}) \vert} |
|
|
|
3316 \,. |
|
|
|
3317 |
|
|
|
3318 </annotation></semantics></math></div></div> |
|
|
|
3319 |
|
|
|
3320 <p>As a consequence:</p> |
|
|
|
3321 |
|
|
|
3322 <div class='num_prop'> |
|
|
|
3323 <h6 id='proposition_2'>Proposition</h6> |
|
|
|
3324 |
|
|
|
3325 <p><strong>(<a href='#McCord66'>McCord 66, theorem 6</a>, <a href='#Quillen78'>Quillen 78, prop. 1.6</a>)</strong></p> |
|
|
|
3326 |
|
|
|
3327 <p>Let <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>,</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}, \mathcal{D}</annotation></semantics></math> be <a class='existingWikiWord' href='/nlab/show/finite+set'>finite</a> <a class='existingWikiWord' href='/nlab/show/partial+order'>posets</a> and consider <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>F \colon \mathcal{C} \to \mathcal{D}</annotation></semantics></math> be a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a>.</p> |
|
|
|
3328 |
|
|
|
3329 <p>If for each element/object <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>y</mi><mo>∈</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>y \in \mathcal{D}</annotation></semantics></math> its <a class='existingWikiWord' href='/nlab/show/preimage'>preimage</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace='verythinmathspace' rspace='0em'>−</mo><mn>1</mn></mrow></msup><mo stretchy='false'>(</mo><mo stretchy='false'>{</mo><mi>y</mi><mo>′</mo><mo>∈</mo><mi>Y</mi><mo stretchy='false'>|</mo><mi>y</mi><mo>′</mo><mo>≤</mo><mi>y</mi><mo stretchy='false'>}</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>f^{-1}( \{ y' \in Y \vert y' \leq y \})</annotation></semantics></math> has <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a> geometric realization, then <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(F)\vert}</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a>.</p> |
|
|
|
3330 </div> |
|
|
|
3331 |
|
|
|
3332 <p>An alternative proof is given in (<a href='#Barmak10'>Barmak 10</a>).</p> |
|
|
|
3333 |
|
|
|
3334 <h3 id='natural_transformations_and_homotopies'>Natural transformations and homotopies</h3> |
|
|
|
3335 |
|
|
|
3336 <div class='num_prop' id='NaturalTrafoMapsToHomotopy'> |
|
|
|
3337 <h6 id='proposition_3'>Proposition</h6> |
|
|
|
3338 |
|
|
|
3339 <p>A <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>η</mi><mo>:</mo><mi>F</mi><mo>⇒</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\eta : F \Rightarrow G</annotation></semantics></math> between two <a class='existingWikiWord' href='/nlab/show/functor'>functors</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo>,</mo><mi>G</mi><mo>:</mo><mi>𝒞</mi><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>F, G : \mathcal{C} \to \mathcal{D}</annotation></semantics></math> induces under geometric realization a <a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a></p> |
|
|
|
3340 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>η</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo lspace='verythinmathspace'>:</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo>⟶</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>G</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
3341 {|N(\eta)|} \colon {\vert N(F)\vert} \longrightarrow {\vert N(G) \vert} |
|
|
|
3342 \,. |
|
|
|
3343 |
|
|
|
3344 </annotation></semantics></math></div></div> |
|
|
|
3345 |
|
|
|
3346 <div class='proof'> |
|
|
|
3347 <h6 id='proof'>Proof</h6> |
|
|
|
3348 |
|
|
|
3349 <p>The natural transformation is equivalently a functor of the form</p> |
|
|
|
3350 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>η</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒞</mi><mo>×</mo><mo stretchy='false'>{</mo><mn>0</mn><mo>→</mo><mn>1</mn><mo stretchy='false'>}</mo><mo>→</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
3351 \eta \;\colon\; \mathcal{C} \times \{0 \to 1\} \to \mathcal{D} |
|
|
|
3352 |
|
|
|
3353 </annotation></semantics></math></div> |
|
|
|
3354 <p>out of the <a class='existingWikiWord' href='/nlab/show/product+category'>product category</a> of <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> with the <a class='existingWikiWord' href='/nlab/show/interval+category'>interval category</a>.</p> |
|
|
|
3355 |
|
|
|
3356 <p>Since <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> preserves <a class='existingWikiWord' href='/nlab/show/cartesian+product'>Cartesian products</a> (see there) we have that</p> |
|
|
|
3357 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo>×</mo><mo stretchy='false'>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>}</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><msub><mo>≃</mo> <mi>iso</mi></msub><mspace width='thickmathspace'></mspace><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mo>×</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo stretchy='false'>{</mo><mn>0</mn><mo>→</mo><mn>1</mn><mo stretchy='false'>}</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
3358 {\vert N( \mathcal{C} \times \{0,1\} ) \vert} |
|
|
|
3359 \;\simeq_{iso}\; |
|
|
|
3360 {\vert N(\mathcal{C}) \vert} \times {\vert N(\{0 \to 1\}) \vert} |
|
|
|
3361 |
|
|
|
3362 </annotation></semantics></math></div> |
|
|
|
3363 <p>But this is a <a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a> in topological spaces, hence <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>η</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'>{\vert N(\eta) \vert}</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a>.</p> |
|
|
|
3364 </div> |
|
|
|
3365 |
|
|
|
3366 <div class='num_cor' id='RealizationOfEquivalenceIsHomotopyEquivalence'> |
|
|
|
3367 <h6 id='corollary'>Corollary</h6> |
|
|
|
3368 |
|
|
|
3369 <p>An <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalence of categories</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>≃</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C} \simeq \mathcal{D}</annotation></semantics></math> induces a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a> between their geometric realizations.</p> |
|
|
|
3370 </div> |
|
|
|
3371 |
|
|
|
3372 <div class='num_remark'> |
|
|
|
3373 <h6 id='remark'>Remark</h6> |
|
|
|
3374 |
|
|
|
3375 <p>The statement still remains true for a pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functor</a>s <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi><mo>⇆</mo><mi>𝒟</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C} \leftrightarrows \mathcal{D}</annotation></semantics></math>.</p> |
|
|
|
3376 </div> |
|
|
|
3377 |
|
|
|
3378 <div class='num_remark'> |
|
|
|
3379 <h6 id='remark_2'>Remark</h6> |
|
|
|
3380 |
|
|
|
3381 <p>Notice that the converse is far from true: Very different categories can have geometric realizations that are (weakly) homotopy equivalent. This is because geometric realization implicitly involves <a class='existingWikiWord' href='/nlab/show/Kan+fibrant+replacement'>Kan fibrant replacement</a>: it freely turns morphisms into <a class='existingWikiWord' href='/nlab/show/equivalence+in+an+%28infinity%2C1%29-category'>equivalences</a>.</p> |
|
|
|
3382 </div> |
|
|
|
3383 |
|
|
|
3384 <div class='num_cor' id='RealizationWithTerminalObjectIsContractible'> |
|
|
|
3385 <h6 id='corollary_2'>Corollary</h6> |
|
|
|
3386 |
|
|
|
3387 <p>If a <a class='existingWikiWord' href='/nlab/show/category'>category</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> has an <a class='existingWikiWord' href='/nlab/show/initial+object'>initial object</a> or a <a class='existingWikiWord' href='/nlab/show/terminal+object'>terminal object</a>, then its geometric realization is <a class='existingWikiWord' href='/nlab/show/contractible+space'>contractible</a>.</p> |
|
|
|
3388 </div> |
|
|
|
3389 |
|
|
|
3390 <div class='proof'> |
|
|
|
3391 <h6 id='proof_2'>Proof</h6> |
|
|
|
3392 |
|
|
|
3393 <p>Assume the case of a terminal object, the other case works <a class='existingWikiWord' href='/nlab/show/duality'>formally dually</a>. Write <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>*</mo></mrow><annotation encoding='application/x-tex'>*</annotation></semantics></math> for the terminal category.</p> |
|
|
|
3394 |
|
|
|
3395 <p>Then we have an equality of functors</p> |
|
|
|
3396 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Id</mi> <mo>*</mo></msub><mo>=</mo><mo stretchy='false'>(</mo><mo>*</mo><mover><mo>→</mo><mo>⊥</mo></mover><mi>C</mi><mo>→</mo><mo>*</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
3397 Id_* = (* \stackrel{\bottom}{\to} C \to *) |
|
|
|
3398 \,, |
|
|
|
3399 |
|
|
|
3400 </annotation></semantics></math></div> |
|
|
|
3401 <p>where the first functor on the right picks the terminal object, and we have a <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a></p> |
|
|
|
3402 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Id</mi> <mi>C</mi></msub><mo>⇒</mo><mo stretchy='false'>(</mo><mi>C</mi><mo>→</mo><mo>*</mo><mover><mo>→</mo><mo>⊥</mo></mover><mi>C</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
3403 Id_C \Rightarrow (C \to * \stackrel{\bottom}{\to} C) |
|
|
|
3404 |
|
|
|
3405 </annotation></semantics></math></div> |
|
|
|
3406 <p>whose components are the unique morphisms into the terminal object.</p> |
|
|
|
3407 |
|
|
|
3408 <p>By prop. <a class='maruku-ref' href='#NaturalTrafoMapsToHomotopy'>3</a> it follows that we have a <a class='existingWikiWord' href='/nlab/show/homotopy+equivalence'>homotopy equivalence</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo><mo>→</mo><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo>*</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo><mo>=</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>\vert N(\mathcal{C}) \vert \to \vert N(\ast) \vert = \ast</annotation></semantics></math>.</p> |
|
|
|
3409 </div> |
|
|
|
3410 |
|
|
|
3411 <h3 id='behaviour_under_homotopy_colimits'>Behaviour under homotopy colimits</h3> |
|
|
|
3412 |
|
|
|
3413 <div class='num_prop'> |
|
|
|
3414 <h6 id='proposition_4'>Proposition</h6> |
|
|
|
3415 |
|
|
|
3416 <p>For <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi><mo lspace='verythinmathspace'>:</mo><mi>𝒟</mi><mo>→</mo><mi>Cat</mi></mrow><annotation encoding='application/x-tex'>F \colon \mathcal{D} \to Cat</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/functor'>functor</a>, let</p> |
|
|
|
3417 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒟</mi><mover><mo>⟶</mo><mi>F</mi></mover><mi>Cat</mi><mover><mo>→</mo><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mover><mi>Top</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
3418 {\vert N(F(-))\vert} |
|
|
|
3419 \;\colon\; |
|
|
|
3420 \mathcal{D} |
|
|
|
3421 \overset{F}{\longrightarrow} |
|
|
|
3422 Cat |
|
|
|
3423 \stackrel{\vert N(-) \vert}{\to} |
|
|
|
3424 Top |
|
|
|
3425 |
|
|
|
3426 </annotation></semantics></math></div> |
|
|
|
3427 <p>be its postcomposition with geometric realization of categories</p> |
|
|
|
3428 |
|
|
|
3429 <p>Then we have a <a class='existingWikiWord' href='/nlab/show/weak+homotopy+equivalence'>weak homotopy equivalence</a></p> |
|
|
|
3430 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mo>|</mo><mi>N</mi><mrow><mo>(</mo><mo>∫</mo><mi>F</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≃</mo><mi>hocolim</mi><mrow><mo stretchy='false'>|</mo><mi>F</mi><mo stretchy='false'>(</mo><mi>N</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
3431 {\left\vert N\left(\int F \right) \right\vert} |
|
|
|
3432 \simeq |
|
|
|
3433 hocolim {\vert F(N(-)) \vert} |
|
|
|
3434 |
|
|
|
3435 </annotation></semantics></math></div> |
|
|
|
3436 <p>exhibiting the <a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a> in <a class='existingWikiWord' href='/nlab/show/Top'>Top</a> over <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>|</mo><mi>N</mi><mo stretchy='false'>(</mo><mi>F</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo stretchy='false'>|</mo></mrow><annotation encoding='application/x-tex'>\vert N(F (-)) \vert</annotation></semantics></math> as the geometric realization of the <a class='existingWikiWord' href='/nlab/show/Grothendieck+construction'>Grothendieck construction</a> <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∫</mo><mi>F</mi></mrow><annotation encoding='application/x-tex'>\int F</annotation></semantics></math> of <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math>.</p> |
|
|
|
3437 </div> |
|
|
|
3438 |
|
|
|
3439 <p>This is due to (<a href='#Thomason79'>Thomason 79</a>).</p> |
|
|
|
3440 |
|
|
|
3441 <h2 id='related_concepts'>Related concepts</h2> |
|
|
|
3442 |
|
|
|
3443 <ul> |
|
|
|
3444 <li> |
|
|
|
3445 <p><a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a></p> |
|
|
|
3446 |
|
|
|
3447 <ul> |
|
|
|
3448 <li><strong>of categories</strong>, <a class='existingWikiWord' href='/nlab/show/geometric+realization+of+simplicial+topological+spaces'>of simplicial topological spaces</a>, <a class='existingWikiWord' href='/nlab/show/geometric+realization+of+cohesive+infinity-groupoids'>of cohesive ∞-groupoids</a></li> |
|
|
|
3449 </ul> |
|
|
|
3450 </li> |
|
|
|
3451 </ul> |
|
|
|
3452 |
|
|
|
3453 <h2 id='references'>References</h2> |
|
|
|
3454 |
|
|
|
3455 <h3 id='general'>General</h3> |
|
|
|
3456 |
|
|
|
3457 <p>For general references see also <em><a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a></em> and <em><a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a></em>.</p> |
|
|
|
3458 |
|
|
|
3459 <h3 id='quillens_theorems_a_and_b'>Quillen’s theorems A and B</h3> |
|
|
|
3460 |
|
|
|
3461 <p>The original articles are</p> |
|
|
|
3462 |
|
|
|
3463 <ul> |
|
|
|
3464 <li id='McCord66'> |
|
|
|
3465 <p><a class='existingWikiWord' href='/nlab/show/Michael+C.+McCord'>Michael C. McCord</a>, <em>Singular homology groups and homotopy groups of finite topological spaces</em>, Duke Math. J. 33 (1966), 465-474</p> |
|
|
|
3466 </li> |
|
|
|
3467 |
|
|
|
3468 <li id='Quillen72'> |
|
|
|
3469 <p><a class='existingWikiWord' href='/nlab/show/Daniel+Quillen'>Daniel Quillen</a>, <em>Higher algebraic K-theory, I: Higher K-theories</em> Lect. Notes in Math. 341 (1972), 85-1 (<a href='http://math.mit.edu/~hrm/kansem/quillen-higher-algebraic-k-theory.pdf'>pdf</a>)</p> |
|
|
|
3470 </li> |
|
|
|
3471 |
|
|
|
3472 <li id='Quillen78'> |
|
|
|
3473 <p><a class='existingWikiWord' href='/nlab/show/Daniel+Quillen'>Daniel Quillen</a>, <em>Homotopy properties of the poset of nontrivial p-subgroups of a group</em>, Adv. Math. 28 (1978), 101-128.</p> |
|
|
|
3474 </li> |
|
|
|
3475 </ul> |
|
|
|
3476 |
|
|
|
3477 <p>The geometric realization of <a class='existingWikiWord' href='/nlab/show/Grothendieck+construction'>Grothendieck constructions</a> has been analyzed in</p> |
|
|
|
3478 |
|
|
|
3479 <ul> |
|
|
|
3480 <li id='Thomason79'><a class='existingWikiWord' href='/nlab/show/Robert+Thomason'>R. W. Thomason</a>, <em>Homotopy colimits in the category of small categories</em> , Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 91109.</li> |
|
|
|
3481 </ul> |
|
|
|
3482 |
|
|
|
3483 <p>Review is in</p> |
|
|
|
3484 |
|
|
|
3485 <ul> |
|
|
|
3486 <li id='Barmak10'><a class='existingWikiWord' href='/nlab/show/Jonathan+Barmak'>Jonathan Barmak</a>, <em>On Quillen’s Theorem A for posets</em>, Journal of Combinatorial Theory Series A, Volume 118 Issue 8, November, 2011 Pages 2445-2453 (<a href='http://arxiv.org/abs/1005.0538'>arXiv:1005.0538</a>)</li> |
|
|
|
3487 </ul> |
|
|
|
3488 |
|
|
|
3489 <p>Further development includes</p> |
|
|
|
3490 |
|
|
|
3491 <ul> |
|
|
|
3492 <li> |
|
|
|
3493 <p><a class='existingWikiWord' href='/nlab/show/Clark+Barwick'>Clark Barwick</a>, <a class='existingWikiWord' href='/nlab/show/Daniel+Kan'>Daniel Kan</a>, <em>A Quillen theorem <math class='maruku-mathml' display='inline' id='mathml_ea68c383f76618356121fcf995bd6e5db0f17093_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math> for homotopy pullbacks</em> (<a href='http://arxiv.org/abs/1101.4879'>arXiv:1101.4879</a>)</p> |
|
|
|
3494 </li> |
|
|
|
3495 |
|
|
|
3496 <li> |
|
|
|
3497 <p><a class='existingWikiWord' href='/nlab/show/David+Michael+Roberts'>David Roberts</a>, <em><a class='existingWikiWord' href='/davidroberts/show/Theorem+A+for+topological+categories' title='davidroberts'>Theorem A for topological categories</a></em></p> |
|
|
|
3498 </li> |
|
|
|
3499 </ul> |
|
|
|
3500 |
|
|
|
3501 <p> |
|
|
|
3502 </p> |
|
|
|
3503 |
|
|
|
3504 <p> |
|
|
|
3505 |
|
|
|
3506 |
|
|
|
3507 |
|
|
|
3508 |
|
|
|
3509 |
|
|
|
3510 |
|
|
|
3511 |
|
|
|
3512 </p> </div> |
|
|
|
3513 </content> |
|
|
|
3514 </entry> |
|
|
|
3515 <entry> |
|
|
|
3516 <title type="html">Borel model structure</title> |
|
|
|
3517 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Borel+model+structure"/> |
|
|
|
3518 <updated>2021-07-01T16:26:36Z</updated> |
|
|
|
3519 <published>2014-04-15T05:41:15Z</published> |
|
|
|
3520 <id>tag:ncatlab.org,2014-04-15:nLab,Borel+model+structure</id> |
|
|
|
3521 <author> |
|
|
|
3522 <name>Urs Schreiber</name> |
|
|
|
3523 </author> |
|
|
|
3524 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Borel+model+structure"> |
|
|
|
3525 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
3526 <div class='rightHandSide'> |
|
|
|
3527 <div class='toc clickDown' tabindex='0'> |
|
|
|
3528 <h3 id='context'>Context</h3> |
|
|
|
3529 |
|
|
|
3530 <h4 id='model_category_theory'>Model category theory</h4> |
|
|
|
3531 |
|
|
|
3532 <div class='hide'> |
|
|
|
3533 <p><strong><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></strong></p> |
|
|
|
3534 |
|
|
|
3535 <h2 id='definitions'>Definitions</h2> |
|
|
|
3536 |
|
|
|
3537 <ul> |
|
|
|
3538 <li> |
|
|
|
3539 <p><a class='existingWikiWord' href='/nlab/show/category+with+weak+equivalences'>category with weak equivalences</a></p> |
|
|
|
3540 </li> |
|
|
|
3541 |
|
|
|
3542 <li> |
|
|
|
3543 <p><a class='existingWikiWord' href='/nlab/show/weak+factorization+system'>weak factorization system</a></p> |
|
|
|
3544 </li> |
|
|
|
3545 |
|
|
|
3546 <li> |
|
|
|
3547 <p><a class='existingWikiWord' href='/nlab/show/homotopy+%28as+an+operation%29'>homotopy</a></p> |
|
|
|
3548 |
|
|
|
3549 <ul> |
|
|
|
3550 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></li> |
|
|
|
3551 </ul> |
|
|
|
3552 </li> |
|
|
|
3553 |
|
|
|
3554 <li> |
|
|
|
3555 <p><a class='existingWikiWord' href='/nlab/show/small+object+argument'>small object argument</a></p> |
|
|
|
3556 </li> |
|
|
|
3557 |
|
|
|
3558 <li> |
|
|
|
3559 <p><a class='existingWikiWord' href='/nlab/show/resolution'>resolution</a></p> |
|
|
|
3560 </li> |
|
|
|
3561 </ul> |
|
|
|
3562 |
|
|
|
3563 <h2 id='morphisms'>Morphisms</h2> |
|
|
|
3564 |
|
|
|
3565 <ul> |
|
|
|
3566 <li> |
|
|
|
3567 <p><a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>Quillen adjunction</a></p> |
|
|
|
3568 |
|
|
|
3569 <ul> |
|
|
|
3570 <li> |
|
|
|
3571 <p><a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen equivalence</a></p> |
|
|
|
3572 </li> |
|
|
|
3573 |
|
|
|
3574 <li> |
|
|
|
3575 <p><a class='existingWikiWord' href='/nlab/show/Quillen+bifunctor'>Quillen bifunctor</a></p> |
|
|
|
3576 </li> |
|
|
|
3577 |
|
|
|
3578 <li> |
|
|
|
3579 <p><a class='existingWikiWord' href='/nlab/show/derived+functor'>derived functor</a></p> |
|
|
|
3580 </li> |
|
|
|
3581 </ul> |
|
|
|
3582 </li> |
|
|
|
3583 </ul> |
|
|
|
3584 |
|
|
|
3585 <h2 id='universal_constructions'>Universal constructions</h2> |
|
|
|
3586 |
|
|
|
3587 <ul> |
|
|
|
3588 <li> |
|
|
|
3589 <p><a class='existingWikiWord' href='/nlab/show/homotopy+Kan+extension'>homotopy Kan extension</a></p> |
|
|
|
3590 </li> |
|
|
|
3591 |
|
|
|
3592 <li> |
|
|
|
3593 <p><a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy limit</a>/<a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a></p> |
|
|
|
3594 </li> |
|
|
|
3595 |
|
|
|
3596 <li> |
|
|
|
3597 <p><a class='existingWikiWord' href='/nlab/show/Bousfield-Kan+map'>Bousfield-Kan map</a></p> |
|
|
|
3598 </li> |
|
|
|
3599 </ul> |
|
|
|
3600 |
|
|
|
3601 <h2 id='refinements'>Refinements</h2> |
|
|
|
3602 |
|
|
|
3603 <ul> |
|
|
|
3604 <li> |
|
|
|
3605 <p><a class='existingWikiWord' href='/nlab/show/monoidal+model+category'>monoidal model category</a></p> |
|
|
|
3606 |
|
|
|
3607 <ul> |
|
|
|
3608 <li><a class='existingWikiWord' href='/nlab/show/monoidal+Quillen+adjunction'>monoidal Quillen adjunction</a></li> |
|
|
|
3609 </ul> |
|
|
|
3610 </li> |
|
|
|
3611 |
|
|
|
3612 <li> |
|
|
|
3613 <p><a class='existingWikiWord' href='/nlab/show/enriched+model+category'>enriched model category</a></p> |
|
|
|
3614 |
|
|
|
3615 <ul> |
|
|
|
3616 <li><a class='existingWikiWord' href='/nlab/show/enriched+Quillen+adjunction'>enriched Quillen adjunction</a></li> |
|
|
|
3617 </ul> |
|
|
|
3618 </li> |
|
|
|
3619 |
|
|
|
3620 <li> |
|
|
|
3621 <p><a class='existingWikiWord' href='/nlab/show/simplicial+model+category'>simplicial model category</a></p> |
|
|
|
3622 |
|
|
|
3623 <ul> |
|
|
|
3624 <li><a class='existingWikiWord' href='/nlab/show/simplicial+Quillen+adjunction'>simplicial Quillen adjunction</a></li> |
|
|
|
3625 </ul> |
|
|
|
3626 </li> |
|
|
|
3627 |
|
|
|
3628 <li> |
|
|
|
3629 <p><a class='existingWikiWord' href='/nlab/show/cofibrantly+generated+model+category'>cofibrantly generated model category</a></p> |
|
|
|
3630 |
|
|
|
3631 <ul> |
|
|
|
3632 <li> |
|
|
|
3633 <p><a class='existingWikiWord' href='/nlab/show/combinatorial+model+category'>combinatorial model category</a></p> |
|
|
|
3634 </li> |
|
|
|
3635 |
|
|
|
3636 <li> |
|
|
|
3637 <p><a class='existingWikiWord' href='/nlab/show/cellular+model+category'>cellular model category</a></p> |
|
|
|
3638 </li> |
|
|
|
3639 </ul> |
|
|
|
3640 </li> |
|
|
|
3641 |
|
|
|
3642 <li> |
|
|
|
3643 <p><a class='existingWikiWord' href='/nlab/show/algebraic+model+category'>algebraic model category</a></p> |
|
|
|
3644 </li> |
|
|
|
3645 |
|
|
|
3646 <li> |
|
|
|
3647 <p><a class='existingWikiWord' href='/nlab/show/compactly+generated+model+category'>compactly generated model category</a></p> |
|
|
|
3648 </li> |
|
|
|
3649 |
|
|
|
3650 <li> |
|
|
|
3651 <p><a class='existingWikiWord' href='/nlab/show/proper+model+category'>proper model category</a></p> |
|
|
|
3652 </li> |
|
|
|
3653 |
|
|
|
3654 <li> |
|
|
|
3655 <p><a class='existingWikiWord' href='/nlab/show/cartesian+model+category'>cartesian closed model category</a>, <a class='existingWikiWord' href='/nlab/show/locally+cartesian+closed+model+category'>locally cartesian closed model category</a></p> |
|
|
|
3656 </li> |
|
|
|
3657 |
|
|
|
3658 <li> |
|
|
|
3659 <p><a class='existingWikiWord' href='/nlab/show/stable+model+category'>stable model category</a></p> |
|
|
|
3660 </li> |
|
|
|
3661 </ul> |
|
|
|
3662 |
|
|
|
3663 <h2 id='producing_new_model_structures'>Producing new model structures</h2> |
|
|
|
3664 |
|
|
|
3665 <ul> |
|
|
|
3666 <li> |
|
|
|
3667 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>on functor categories (global)</a></p> |
|
|
|
3668 |
|
|
|
3669 <ul> |
|
|
|
3670 <li><a class='existingWikiWord' href='/nlab/show/Reedy+model+structure'>Reedy model structure</a></li> |
|
|
|
3671 </ul> |
|
|
|
3672 </li> |
|
|
|
3673 |
|
|
|
3674 <li> |
|
|
|
3675 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+an+over+category'>on overcategories</a></p> |
|
|
|
3676 </li> |
|
|
|
3677 |
|
|
|
3678 <li> |
|
|
|
3679 <p><a class='existingWikiWord' href='/nlab/show/Bousfield+localization+of+model+categories'>Bousfield localization</a></p> |
|
|
|
3680 </li> |
|
|
|
3681 |
|
|
|
3682 <li> |
|
|
|
3683 <p><a class='existingWikiWord' href='/nlab/show/transferred+model+structure'>transferred model structure</a></p> |
|
|
|
3684 |
|
|
|
3685 <ul> |
|
|
|
3686 <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebraic+fibrant+objects'>model structure on algebraic fibrant objects</a></li> |
|
|
|
3687 </ul> |
|
|
|
3688 </li> |
|
|
|
3689 |
|
|
|
3690 <li> |
|
|
|
3691 <p><a class='existingWikiWord' href='/nlab/show/Grothendieck+construction+for+model+categories'>Grothendieck construction for model categories</a></p> |
|
|
|
3692 </li> |
|
|
|
3693 </ul> |
|
|
|
3694 |
|
|
|
3695 <h2 id='presentation_of_categories'>Presentation of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</h2> |
|
|
|
3696 |
|
|
|
3697 <ul> |
|
|
|
3698 <li> |
|
|
|
3699 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> |
|
|
|
3700 </li> |
|
|
|
3701 |
|
|
|
3702 <li> |
|
|
|
3703 <p><a class='existingWikiWord' href='/nlab/show/simplicial+localization'>simplicial localization</a></p> |
|
|
|
3704 </li> |
|
|
|
3705 |
|
|
|
3706 <li> |
|
|
|
3707 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>(∞,1)-categorical hom-space</a></p> |
|
|
|
3708 </li> |
|
|
|
3709 |
|
|
|
3710 <li> |
|
|
|
3711 <p><a class='existingWikiWord' href='/nlab/show/locally+presentable+%28infinity%2C1%29-category'>presentable (∞,1)-category</a></p> |
|
|
|
3712 </li> |
|
|
|
3713 </ul> |
|
|
|
3714 |
|
|
|
3715 <h2 id='model_structures'>Model structures</h2> |
|
|
|
3716 |
|
|
|
3717 <ul> |
|
|
|
3718 <li><a class='existingWikiWord' href='/nlab/show/Cisinski+model+structure'>Cisinski model structure</a></li> |
|
|
|
3719 </ul> |
|
|
|
3720 |
|
|
|
3721 <h3 id='for_groupoids'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</h3> |
|
|
|
3722 |
|
|
|
3723 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+infinity-groupoids'>for ∞-groupoids</a></p> |
|
|
|
3724 |
|
|
|
3725 <ul> |
|
|
|
3726 <li> |
|
|
|
3727 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+topological+spaces'>on topological spaces</a></p> |
|
|
|
3728 |
|
|
|
3729 <ul> |
|
|
|
3730 <li> |
|
|
|
3731 <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+topological+spaces'>classical model structure</a></p> |
|
|
|
3732 </li> |
|
|
|
3733 |
|
|
|
3734 <li> |
|
|
|
3735 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+Delta-generated+topological+spaces'>on Delta-generated spaces</a></p> |
|
|
|
3736 </li> |
|
|
|
3737 |
|
|
|
3738 <li> |
|
|
|
3739 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+diffeological+spaces'>on diffeological spaces</a></p> |
|
|
|
3740 </li> |
|
|
|
3741 |
|
|
|
3742 <li> |
|
|
|
3743 <p><a class='existingWikiWord' href='/nlab/show/Str%C3%B8m+model+structure'>Strom model structure</a></p> |
|
|
|
3744 </li> |
|
|
|
3745 </ul> |
|
|
|
3746 </li> |
|
|
|
3747 |
|
|
|
3748 <li> |
|
|
|
3749 <p><a class='existingWikiWord' href='/nlab/show/Thomason+model+structure'>Thomason model structure</a></p> |
|
|
|
3750 </li> |
|
|
|
3751 |
|
|
|
3752 <li> |
|
|
|
3753 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+over+a+test+category'>model structure on presheaves over a test category</a></p> |
|
|
|
3754 </li> |
|
|
|
3755 |
|
|
|
3756 <li> |
|
|
|
3757 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sets'>on simplicial sets</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+semi-simplicial+sets'>on semi-simplicial sets</a></p> |
|
|
|
3758 |
|
|
|
3759 <ul> |
|
|
|
3760 <li> |
|
|
|
3761 <p><a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure</a></p> |
|
|
|
3762 </li> |
|
|
|
3763 |
|
|
|
3764 <li> |
|
|
|
3765 <p><a class='existingWikiWord' href='/nlab/show/constructive+model+structure+on+simplicial+sets'>constructive model structure</a></p> |
|
|
|
3766 </li> |
|
|
|
3767 |
|
|
|
3768 <li> |
|
|
|
3769 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+left+fibrations'>for right/left fibrations</a></p> |
|
|
|
3770 </li> |
|
|
|
3771 </ul> |
|
|
|
3772 </li> |
|
|
|
3773 |
|
|
|
3774 <li> |
|
|
|
3775 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+groupoids'>model structure on simplicial groupoids</a></p> |
|
|
|
3776 </li> |
|
|
|
3777 |
|
|
|
3778 <li> |
|
|
|
3779 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cubical+sets'>on cubical sets</a></p> |
|
|
|
3780 </li> |
|
|
|
3781 |
|
|
|
3782 <li> |
|
|
|
3783 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+strict+omega-groupoids'>on strict ∞-groupoids</a>, <a class='existingWikiWord' href='/nlab/show/canonical+model+structure+on+groupoids'>on groupoids</a></p> |
|
|
|
3784 </li> |
|
|
|
3785 |
|
|
|
3786 <li> |
|
|
|
3787 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+chain+complexes'>on chain complexes</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+abelian+groups'>model structure on cosimplicial abelian groups</a></p> |
|
|
|
3788 |
|
|
|
3789 <p>related by the <a class='existingWikiWord' href='/nlab/show/Dold-Kan+correspondence'>Dold-Kan correspondence</a></p> |
|
|
|
3790 </li> |
|
|
|
3791 |
|
|
|
3792 <li> |
|
|
|
3793 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+simplicial+sets'>model structure on cosimplicial simplicial sets</a></p> |
|
|
|
3794 </li> |
|
|
|
3795 </ul> |
|
|
|
3796 |
|
|
|
3797 <h3 id='for_rational_groupoids'>for rational <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groupoids</h3> |
|
|
|
3798 |
|
|
|
3799 <ul> |
|
|
|
3800 <li> |
|
|
|
3801 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>model structure on dgc-algebras</a></p> |
|
|
|
3802 </li> |
|
|
|
3803 |
|
|
|
3804 <li> |
|
|
|
3805 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+equivariant+dgc-algebras'>model structure on equivariant dgc-algebras</a></p> |
|
|
|
3806 |
|
|
|
3807 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+equivariant+chain+complexes'>model structure on equivariant chain complexes</a></p> |
|
|
|
3808 </li> |
|
|
|
3809 </ul> |
|
|
|
3810 |
|
|
|
3811 <h3 id='for_groupoids_2'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-groupoids</h3> |
|
|
|
3812 |
|
|
|
3813 <ul> |
|
|
|
3814 <li> |
|
|
|
3815 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+homotopy+n-types'>for n-groupoids</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+for+homotopy+n-types'>for n-types</a></p> |
|
|
|
3816 </li> |
|
|
|
3817 |
|
|
|
3818 <li> |
|
|
|
3819 <p><a class='existingWikiWord' href='/nlab/show/canonical+model+structure+on+groupoids'>for 1-groupoids</a></p> |
|
|
|
3820 </li> |
|
|
|
3821 </ul> |
|
|
|
3822 |
|
|
|
3823 <h3 id='for_groups'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-groups</h3> |
|
|
|
3824 |
|
|
|
3825 <ul> |
|
|
|
3826 <li> |
|
|
|
3827 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+groups'>model structure on simplicial groups</a></p> |
|
|
|
3828 </li> |
|
|
|
3829 |
|
|
|
3830 <li> |
|
|
|
3831 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+reduced+simplicial+sets'>model structure on reduced simplicial sets</a></p> |
|
|
|
3832 </li> |
|
|
|
3833 </ul> |
|
|
|
3834 |
|
|
|
3835 <h3 id='for_algebras'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-algebras</h3> |
|
|
|
3836 |
|
|
|
3837 <h4 id='general'>general</h4> |
|
|
|
3838 |
|
|
|
3839 <ul> |
|
|
|
3840 <li> |
|
|
|
3841 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+monoids+in+a+monoidal+model+category'>on monoids</a></p> |
|
|
|
3842 </li> |
|
|
|
3843 |
|
|
|
3844 <li> |
|
|
|
3845 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+algebras'>on simplicial T-algebras</a>, on <a class='existingWikiWord' href='/nlab/show/homotopy+T-algebra'>homotopy T-algebra</a>s</p> |
|
|
|
3846 </li> |
|
|
|
3847 |
|
|
|
3848 <li> |
|
|
|
3849 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+a+monad'>on algebas over a monad</a></p> |
|
|
|
3850 </li> |
|
|
|
3851 |
|
|
|
3852 <li> |
|
|
|
3853 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>on algebras over an operad</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+modules+over+an+algebra+over+an+operad'>on modules over an algebra over an operad</a></p> |
|
|
|
3854 </li> |
|
|
|
3855 </ul> |
|
|
|
3856 |
|
|
|
3857 <h4 id='specific'>specific</h4> |
|
|
|
3858 |
|
|
|
3859 <ul> |
|
|
|
3860 <li> |
|
|
|
3861 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>model structure on differential-graded commutative algebras</a></p> |
|
|
|
3862 </li> |
|
|
|
3863 |
|
|
|
3864 <li> |
|
|
|
3865 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+differential+graded-commutative+superalgebras'>model structure on differential graded-commutative superalgebras</a></p> |
|
|
|
3866 </li> |
|
|
|
3867 |
|
|
|
3868 <li> |
|
|
|
3869 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras+over+an+operad'>on dg-algebras over an operad</a></p> |
|
|
|
3870 |
|
|
|
3871 <ul> |
|
|
|
3872 <li> |
|
|
|
3873 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-algebras'>on dg-algebras</a> and on <a class='existingWikiWord' href='/nlab/show/simplicial+ring'>on simplicial rings</a>/<a class='existingWikiWord' href='/nlab/show/model+structure+on+cosimplicial+rings'>on cosimplicial rings</a></p> |
|
|
|
3874 |
|
|
|
3875 <p>related by the <a class='existingWikiWord' href='/nlab/show/monoidal+Dold-Kan+correspondence'>monoidal Dold-Kan correspondence</a></p> |
|
|
|
3876 </li> |
|
|
|
3877 |
|
|
|
3878 <li> |
|
|
|
3879 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+L-infinity+algebras'>for L-∞ algebras</a>: <a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-Lie+algebras'>on dg-Lie algebras</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-coalgebras'>on dg-coalgebras</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+Lie+algebras'>on simplicial Lie algebras</a></p> |
|
|
|
3880 </li> |
|
|
|
3881 </ul> |
|
|
|
3882 </li> |
|
|
|
3883 |
|
|
|
3884 <li> |
|
|
|
3885 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-modules'>model structure on dg-modules</a></p> |
|
|
|
3886 </li> |
|
|
|
3887 </ul> |
|
|
|
3888 |
|
|
|
3889 <h3 id='for_stablespectrum_objects'>for stable/spectrum objects</h3> |
|
|
|
3890 |
|
|
|
3891 <ul> |
|
|
|
3892 <li> |
|
|
|
3893 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+spectra'>model structure on spectra</a></p> |
|
|
|
3894 </li> |
|
|
|
3895 |
|
|
|
3896 <li> |
|
|
|
3897 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+ring+spectra'>model structure on ring spectra</a></p> |
|
|
|
3898 </li> |
|
|
|
3899 |
|
|
|
3900 <li> |
|
|
|
3901 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+of+spectra'>model structure on presheaves of spectra</a></p> |
|
|
|
3902 </li> |
|
|
|
3903 </ul> |
|
|
|
3904 |
|
|
|
3905 <h3 id='for_categories'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</h3> |
|
|
|
3906 |
|
|
|
3907 <ul> |
|
|
|
3908 <li> |
|
|
|
3909 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+relative+categories'>on categories with weak equivalences</a></p> |
|
|
|
3910 </li> |
|
|
|
3911 |
|
|
|
3912 <li> |
|
|
|
3913 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+quasi-categories'>Joyal model for quasi-categories</a></p> |
|
|
|
3914 </li> |
|
|
|
3915 |
|
|
|
3916 <li> |
|
|
|
3917 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+sSet-categories'>on sSet-categories</a></p> |
|
|
|
3918 </li> |
|
|
|
3919 |
|
|
|
3920 <li> |
|
|
|
3921 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+complete+Segal+spaces'>for complete Segal spaces</a></p> |
|
|
|
3922 </li> |
|
|
|
3923 |
|
|
|
3924 <li> |
|
|
|
3925 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+Cartesian+fibrations'>for Cartesian fibrations</a></p> |
|
|
|
3926 </li> |
|
|
|
3927 </ul> |
|
|
|
3928 |
|
|
|
3929 <h3 id='for_stable_categories'>for stable <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-categories</h3> |
|
|
|
3930 |
|
|
|
3931 <ul> |
|
|
|
3932 <li><a class='existingWikiWord' href='/nlab/show/model+structure+on+dg-categories'>on dg-categories</a></li> |
|
|
|
3933 </ul> |
|
|
|
3934 |
|
|
|
3935 <h3 id='for_operads'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-operads</h3> |
|
|
|
3936 |
|
|
|
3937 <ul> |
|
|
|
3938 <li> |
|
|
|
3939 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+operads'>on operads</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+Segal+operads'>for Segal operads</a></p> |
|
|
|
3940 |
|
|
|
3941 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+algebras+over+an+operad'>on algebras over an operad</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+on+modules+over+an+algebra+over+an+operad'>on modules over an algebra over an operad</a></p> |
|
|
|
3942 </li> |
|
|
|
3943 |
|
|
|
3944 <li> |
|
|
|
3945 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+dendroidal+sets'>on dendroidal sets</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+dendroidal+complete+Segal+spaces'>for dendroidal complete Segal spaces</a>, <a class='existingWikiWord' href='/nlab/show/model+structure+for+dendroidal+Cartesian+fibrations'>for dendroidal Cartesian fibrations</a></p> |
|
|
|
3946 </li> |
|
|
|
3947 </ul> |
|
|
|
3948 |
|
|
|
3949 <h3 id='for_categories_2'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>n</mi><mo>,</mo><mi>r</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(n,r)</annotation></semantics></math>-categories</h3> |
|
|
|
3950 |
|
|
|
3951 <ul> |
|
|
|
3952 <li> |
|
|
|
3953 <p><a class='existingWikiWord' href='/nlab/show/Theta-space'>for (n,r)-categories as ∞-spaces</a></p> |
|
|
|
3954 </li> |
|
|
|
3955 |
|
|
|
3956 <li> |
|
|
|
3957 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+weak+complicial+sets'>for weak ∞-categories as weak complicial sets</a></p> |
|
|
|
3958 </li> |
|
|
|
3959 |
|
|
|
3960 <li> |
|
|
|
3961 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+cellular+sets'>on cellular sets</a></p> |
|
|
|
3962 </li> |
|
|
|
3963 |
|
|
|
3964 <li> |
|
|
|
3965 <p><a class='existingWikiWord' href='/nlab/show/canonical+model+structure'>on higher categories in general</a></p> |
|
|
|
3966 </li> |
|
|
|
3967 |
|
|
|
3968 <li> |
|
|
|
3969 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+strict+omega-categories'>on strict ∞-categories</a></p> |
|
|
|
3970 </li> |
|
|
|
3971 </ul> |
|
|
|
3972 |
|
|
|
3973 <h3 id='for_sheaves__stacks'>for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-sheaves / <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</h3> |
|
|
|
3974 |
|
|
|
3975 <ul> |
|
|
|
3976 <li> |
|
|
|
3977 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+homotopical+presheaves'>on homotopical presheaves</a></p> |
|
|
|
3978 |
|
|
|
3979 <ul> |
|
|
|
3980 <li> |
|
|
|
3981 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>on simplicial presheaves</a></p> |
|
|
|
3982 |
|
|
|
3983 <p><a class='existingWikiWord' href='/nlab/show/global+model+structure+on+simplicial+presheaves'>global model structure</a>/<a class='existingWikiWord' href='/nlab/show/%C4%8Cech+model+structure+on+simplicial+presheaves'>Cech model structure</a>/<a class='existingWikiWord' href='/nlab/show/local+model+structure+on+simplicial+presheaves'>local model structure</a></p> |
|
|
|
3984 |
|
|
|
3985 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sheaves'>on simplicial sheaves</a></p> |
|
|
|
3986 |
|
|
|
3987 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+presheaves+of+simplicial+groupoids'>on presheaves of simplicial groupoids</a></p> |
|
|
|
3988 |
|
|
|
3989 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+sSet-enriched+presheaves'>on sSet-enriched presheaves</a></p> |
|
|
|
3990 </li> |
|
|
|
3991 </ul> |
|
|
|
3992 </li> |
|
|
|
3993 |
|
|
|
3994 <li> |
|
|
|
3995 <p><a class='existingWikiWord' href='/nlab/show/model+structure+for+%282%2C1%29-sheaves'>model structure for (2,1)-sheaves</a>/for stacks</p> |
|
|
|
3996 </li> |
|
|
|
3997 </ul> |
|
|
|
3998 <div> |
|
|
|
3999 <p> |
|
|
|
4000 <a href='/nlab/edit/model+category+theory+-+contents'>Edit this sidebar</a> |
|
|
|
4001 </p> |
|
|
|
4002 </div></div> |
|
|
|
4003 |
|
|
|
4004 <h4 id='group_theory'>Group Theory</h4> |
|
|
|
4005 |
|
|
|
4006 <div class='hide'> |
|
|
|
4007 <p><strong><a class='existingWikiWord' href='/nlab/show/group+theory'>group theory</a></strong></p> |
|
|
|
4008 |
|
|
|
4009 <ul> |
|
|
|
4010 <li><a class='existingWikiWord' href='/nlab/show/group'>group</a>, <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></li> |
|
|
|
4011 |
|
|
|
4012 <li><a class='existingWikiWord' href='/nlab/show/group+object'>group object</a>, <a class='existingWikiWord' href='/nlab/show/groupoid+object+in+an+%28infinity%2C1%29-category'>group object in an (∞,1)-category</a></li> |
|
|
|
4013 |
|
|
|
4014 <li><a class='existingWikiWord' href='/nlab/show/abelian+group'>abelian group</a>, <a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></li> |
|
|
|
4015 |
|
|
|
4016 <li><a class='existingWikiWord' href='/nlab/show/action'>group action</a>, <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></li> |
|
|
|
4017 |
|
|
|
4018 <li><a class='existingWikiWord' href='/nlab/show/representation'>representation</a>, <a class='existingWikiWord' href='/nlab/show/infinity-representation'>∞-representation</a></li> |
|
|
|
4019 |
|
|
|
4020 <li><a class='existingWikiWord' href='/nlab/show/progroup'>progroup</a></li> |
|
|
|
4021 |
|
|
|
4022 <li><a class='existingWikiWord' href='/nlab/show/homogeneous+space'>homogeneous space</a></li> |
|
|
|
4023 </ul> |
|
|
|
4024 |
|
|
|
4025 <h3 id='classical_groups'>Classical groups</h3> |
|
|
|
4026 |
|
|
|
4027 <ul> |
|
|
|
4028 <li> |
|
|
|
4029 <p><a class='existingWikiWord' href='/nlab/show/general+linear+group'>general linear group</a></p> |
|
|
|
4030 </li> |
|
|
|
4031 |
|
|
|
4032 <li> |
|
|
|
4033 <p><a class='existingWikiWord' href='/nlab/show/unitary+group'>unitary group</a></p> |
|
|
|
4034 |
|
|
|
4035 <ul> |
|
|
|
4036 <li><a class='existingWikiWord' href='/nlab/show/special+unitary+group'>special unitary group</a>. <a class='existingWikiWord' href='/nlab/show/projective+unitary+group'>projective unitary group</a></li> |
|
|
|
4037 </ul> |
|
|
|
4038 </li> |
|
|
|
4039 |
|
|
|
4040 <li> |
|
|
|
4041 <p><a class='existingWikiWord' href='/nlab/show/orthogonal+group'>orthogonal group</a></p> |
|
|
|
4042 |
|
|
|
4043 <ul> |
|
|
|
4044 <li><a class='existingWikiWord' href='/nlab/show/special+orthogonal+group'>special orthogonal group</a></li> |
|
|
|
4045 </ul> |
|
|
|
4046 </li> |
|
|
|
4047 |
|
|
|
4048 <li> |
|
|
|
4049 <p><a class='existingWikiWord' href='/nlab/show/symplectic+group'>symplectic group</a></p> |
|
|
|
4050 </li> |
|
|
|
4051 </ul> |
|
|
|
4052 |
|
|
|
4053 <h3 id='finite_groups'>Finite groups</h3> |
|
|
|
4054 |
|
|
|
4055 <ul> |
|
|
|
4056 <li> |
|
|
|
4057 <p><a class='existingWikiWord' href='/nlab/show/finite+group'>finite group</a></p> |
|
|
|
4058 </li> |
|
|
|
4059 |
|
|
|
4060 <li> |
|
|
|
4061 <p><a class='existingWikiWord' href='/nlab/show/symmetric+group'>symmetric group</a>, <a class='existingWikiWord' href='/nlab/show/cyclic+group'>cyclic group</a>, <a class='existingWikiWord' href='/nlab/show/braid+group'>braid group</a></p> |
|
|
|
4062 </li> |
|
|
|
4063 |
|
|
|
4064 <li> |
|
|
|
4065 <p><a class='existingWikiWord' href='/nlab/show/classification+of+finite+simple+groups'>classification of finite simple groups</a></p> |
|
|
|
4066 </li> |
|
|
|
4067 |
|
|
|
4068 <li> |
|
|
|
4069 <p><a class='existingWikiWord' href='/nlab/show/sporadic+finite+simple+group'>sporadic finite simple groups</a></p> |
|
|
|
4070 |
|
|
|
4071 <ul> |
|
|
|
4072 <li><a class='existingWikiWord' href='/nlab/show/Monster+group'>Monster group</a>, <a class='existingWikiWord' href='/nlab/show/Mathieu+group'>Mathieu group</a></li> |
|
|
|
4073 </ul> |
|
|
|
4074 </li> |
|
|
|
4075 </ul> |
|
|
|
4076 |
|
|
|
4077 <h3 id='group_schemes'>Group schemes</h3> |
|
|
|
4078 |
|
|
|
4079 <ul> |
|
|
|
4080 <li><a class='existingWikiWord' href='/nlab/show/algebraic+group'>algebraic group</a></li> |
|
|
|
4081 |
|
|
|
4082 <li><a class='existingWikiWord' href='/nlab/show/abelian+variety'>abelian variety</a></li> |
|
|
|
4083 </ul> |
|
|
|
4084 |
|
|
|
4085 <h3 id='topological_groups'>Topological groups</h3> |
|
|
|
4086 |
|
|
|
4087 <ul> |
|
|
|
4088 <li> |
|
|
|
4089 <p><a class='existingWikiWord' href='/nlab/show/topological+group'>topological group</a></p> |
|
|
|
4090 </li> |
|
|
|
4091 |
|
|
|
4092 <li> |
|
|
|
4093 <p><a class='existingWikiWord' href='/nlab/show/compact+topological+group'>compact topological group</a>, <a class='existingWikiWord' href='/nlab/show/locally+compact+topological+group'>locally compact topological group</a></p> |
|
|
|
4094 </li> |
|
|
|
4095 |
|
|
|
4096 <li> |
|
|
|
4097 <p><a class='existingWikiWord' href='/nlab/show/maximal+compact+subgroup'>maximal compact subgroup</a></p> |
|
|
|
4098 </li> |
|
|
|
4099 |
|
|
|
4100 <li> |
|
|
|
4101 <p><a class='existingWikiWord' href='/nlab/show/string+group'>string group</a></p> |
|
|
|
4102 </li> |
|
|
|
4103 </ul> |
|
|
|
4104 |
|
|
|
4105 <h3 id='lie_groups'>Lie groups</h3> |
|
|
|
4106 |
|
|
|
4107 <ul> |
|
|
|
4108 <li> |
|
|
|
4109 <p><a class='existingWikiWord' href='/nlab/show/Lie+group'>Lie group</a></p> |
|
|
|
4110 </li> |
|
|
|
4111 |
|
|
|
4112 <li> |
|
|
|
4113 <p><a class='existingWikiWord' href='/nlab/show/compact+Lie+group'>compact Lie group</a></p> |
|
|
|
4114 </li> |
|
|
|
4115 |
|
|
|
4116 <li> |
|
|
|
4117 <p><a class='existingWikiWord' href='/nlab/show/Kac-Moody+group'>Kac-Moody group</a></p> |
|
|
|
4118 </li> |
|
|
|
4119 </ul> |
|
|
|
4120 |
|
|
|
4121 <h3 id='superlie_groups'>Super-Lie groups</h3> |
|
|
|
4122 |
|
|
|
4123 <ul> |
|
|
|
4124 <li> |
|
|
|
4125 <p><a class='existingWikiWord' href='/nlab/show/supergroup'>super Lie group</a></p> |
|
|
|
4126 </li> |
|
|
|
4127 |
|
|
|
4128 <li> |
|
|
|
4129 <p><a class='existingWikiWord' href='/nlab/show/super+Euclidean+group'>super Euclidean group</a></p> |
|
|
|
4130 </li> |
|
|
|
4131 </ul> |
|
|
|
4132 |
|
|
|
4133 <h3 id='higher_groups'>Higher groups</h3> |
|
|
|
4134 |
|
|
|
4135 <ul> |
|
|
|
4136 <li> |
|
|
|
4137 <p><a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a></p> |
|
|
|
4138 |
|
|
|
4139 <ul> |
|
|
|
4140 <li><a class='existingWikiWord' href='/nlab/show/crossed+module'>crossed module</a>, <a class='existingWikiWord' href='/nlab/show/strict+2-group'>strict 2-group</a></li> |
|
|
|
4141 </ul> |
|
|
|
4142 </li> |
|
|
|
4143 |
|
|
|
4144 <li> |
|
|
|
4145 <p><a class='existingWikiWord' href='/nlab/show/n-group'>n-group</a></p> |
|
|
|
4146 </li> |
|
|
|
4147 |
|
|
|
4148 <li> |
|
|
|
4149 <p><a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a></p> |
|
|
|
4150 |
|
|
|
4151 <ul> |
|
|
|
4152 <li> |
|
|
|
4153 <p><a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a></p> |
|
|
|
4154 </li> |
|
|
|
4155 |
|
|
|
4156 <li> |
|
|
|
4157 <p><a class='existingWikiWord' href='/nlab/show/crossed+complex'>crossed complex</a></p> |
|
|
|
4158 </li> |
|
|
|
4159 |
|
|
|
4160 <li> |
|
|
|
4161 <p><a class='existingWikiWord' href='/nlab/show/k-tuply+groupal+n-groupoid'>k-tuply groupal n-groupoid</a></p> |
|
|
|
4162 </li> |
|
|
|
4163 |
|
|
|
4164 <li> |
|
|
|
4165 <p><a class='existingWikiWord' href='/nlab/show/spectrum'>spectrum</a></p> |
|
|
|
4166 </li> |
|
|
|
4167 </ul> |
|
|
|
4168 </li> |
|
|
|
4169 |
|
|
|
4170 <li> |
|
|
|
4171 <p><a class='existingWikiWord' href='/nlab/show/circle+n-group'>circle n-group</a>, <a class='existingWikiWord' href='/nlab/show/string+2-group'>string 2-group</a>, <a class='existingWikiWord' href='/nlab/show/fivebrane+6-group'>fivebrane Lie 6-group</a></p> |
|
|
|
4172 </li> |
|
|
|
4173 </ul> |
|
|
|
4174 |
|
|
|
4175 <h3 id='cohomology_and_extensions'>Cohomology and Extensions</h3> |
|
|
|
4176 |
|
|
|
4177 <ul> |
|
|
|
4178 <li> |
|
|
|
4179 <p><a class='existingWikiWord' href='/nlab/show/group+cohomology'>group cohomology</a></p> |
|
|
|
4180 </li> |
|
|
|
4181 |
|
|
|
4182 <li> |
|
|
|
4183 <p><a class='existingWikiWord' href='/nlab/show/group+extension'>group extension</a>,</p> |
|
|
|
4184 </li> |
|
|
|
4185 |
|
|
|
4186 <li> |
|
|
|
4187 <p><a class='existingWikiWord' href='/nlab/show/infinity-group+extension'>∞-group extension</a>, <a class='existingWikiWord' href='/nlab/show/Ext'>Ext-group</a></p> |
|
|
|
4188 </li> |
|
|
|
4189 </ul> |
|
|
|
4190 |
|
|
|
4191 <h3 id='_related_concepts'>Related concepts</h3> |
|
|
|
4192 |
|
|
|
4193 <ul> |
|
|
|
4194 <li><a class='existingWikiWord' href='/nlab/show/quantum+group'>quantum group</a></li> |
|
|
|
4195 </ul> |
|
|
|
4196 <div> |
|
|
|
4197 <p> |
|
|
|
4198 <a href='/nlab/edit/group+theory+-+contents'>Edit this sidebar</a> |
|
|
|
4199 </p> |
|
|
|
4200 </div></div> |
|
|
|
4201 </div> |
|
|
|
4202 </div> |
|
|
|
4203 |
|
|
|
4204 <h1 id='contents'>Contents</h1> |
|
|
|
4205 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#definition'>Definition</a></li><li><a href='#properties'>Properties</a><ul><li><a href='#CofibrantReplacementAndHomotopyQuotientsFixedPoints'>Cofibrant replacement and homotopy quotients/fixed points</a></li><li><a href='#RelationToSliceOverSimplicialClassifyingSpace'>Relation to the slice over the simplicial classifying space</a></li><li><a href='#RelationToModelStructureOnPlainSimplicialSets'>Relation to the model structure on plain simplicial sets</a></li><li><a href='#relation_to_the_fine_model_structure_of_equivariant_homotopy_theory'>Relation to the fine model structure of equivariant homotopy theory</a></li><li><a href='#GeneralizationToSimplicialPresheaves'>Generalization to simplicial presheaves</a></li></ul></li><li><a href='#references'>References</a></li></ul></div> |
|
|
|
4206 <h2 id='idea'>Idea</h2> |
|
|
|
4207 |
|
|
|
4208 <p>Given a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>, the <em>Borel model structure</em> is a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structure on the <a class='existingWikiWord' href='/nlab/show/category'>category</a> of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> equipped with <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> which presents the <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a> of <a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-actions</a> of the <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-group</a> (see there) presented by <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>.</p> |
|
|
|
4209 |
|
|
|
4210 <p>In the context of <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a> this is also called the “coarse model structure” (e.g. <a href='#Guillou'>Guillou, section 5</a>), since it is not equivalent to the “fine” homotopy theory of <a class='existingWikiWord' href='/nlab/show/topological+G-space'>G-spaces</a> which enters <a class='existingWikiWord' href='/nlab/show/Elmendorf%27s+theorem'>Elmendorf's theorem</a>.</p> |
|
|
|
4211 |
|
|
|
4212 <h2 id='definition'>Definition</h2> |
|
|
|
4213 |
|
|
|
4214 <p>\begin{defn}\label{BorelModelStructure}</p> |
|
|
|
4215 |
|
|
|
4216 <p>For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a> write</p> |
|
|
|
4217 |
|
|
|
4218 <ul> |
|
|
|
4219 <li> |
|
|
|
4220 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>\mathbf{B}G_\bullet</annotation></semantics></math> for the one-object <a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>sSet-enriched category</a> (here: a <a class='existingWikiWord' href='/nlab/show/simplicial+groupoid'>simplicial groupoid</a>) whose <a class='existingWikiWord' href='/nlab/show/hom-object'>hom-object</a> is <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>.</p> |
|
|
|
4221 </li> |
|
|
|
4222 |
|
|
|
4223 <li> |
|
|
|
4224 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'>G_\bullet Actions(sSet) \;\coloneqq\; sSetCat\big(\mathbf{B}G_\bullet, sSet\big)</annotation></semantics></math> for the <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor+category'>enriched functor category</a> to <a class='existingWikiWord' href='/nlab/show/SimpSet'>SimplicialSets</a>.</p> |
|
|
|
4225 </li> |
|
|
|
4226 |
|
|
|
4227 <li> |
|
|
|
4228 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><msub><mo stretchy='false'>)</mo> <mi>proj</mi></msub><mo>≔</mo><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>G_\bullet Acts(sSet)_{proj} \coloneqq sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> for the projective <a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>model structure on functors</a> (projective <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a>).</p> |
|
|
|
4229 </li> |
|
|
|
4230 </ul> |
|
|
|
4231 |
|
|
|
4232 <p>This is the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math> <em>Borel model structure</em>, naturally a <a class='existingWikiWord' href='/nlab/show/simplicial+model+category'>simplicial model category</a> (<a href='#DDK80'>DDK 80, Prop. 2.4</a>, <a href='#GoerssJardine09'>Goerss & Jardine 09, Chapter V, Thm. 2.3</a>).</p> |
|
|
|
4233 |
|
|
|
4234 <p>\end{defn}</p> |
|
|
|
4235 |
|
|
|
4236 <h2 id='properties'>Properties</h2> |
|
|
|
4237 |
|
|
|
4238 <h3 id='CofibrantReplacementAndHomotopyQuotientsFixedPoints'>Cofibrant replacement and homotopy quotients/fixed points</h3> |
|
|
|
4239 |
|
|
|
4240 <p>\begin{prop}\label{CofibrationsOfSimplicialActions} <strong>(cofibrations of simplicial actions)</strong> \linebreak The cofibrations <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi><mo lspace='verythinmathspace'>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding='application/x-tex'>i \colon X \to Y</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> (Def. \ref{BorelModelStructure}) are precisely those morphisms such that</p> |
|
|
|
4241 |
|
|
|
4242 <ol> |
|
|
|
4243 <li> |
|
|
|
4244 <p>the underlying morphism of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> is a <a class='existingWikiWord' href='/nlab/show/monomorphism'>monomorphism</a>;</p> |
|
|
|
4245 </li> |
|
|
|
4246 |
|
|
|
4247 <li> |
|
|
|
4248 <p>the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> is a relatively <a class='existingWikiWord' href='/nlab/show/free+action'>free action</a>, i.e. <a class='existingWikiWord' href='/nlab/show/free+action'>free</a> on all <a class='existingWikiWord' href='/nlab/show/simplex'>simplices</a> not in the <a class='existingWikiWord' href='/nlab/show/image'>image</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>i</mi></mrow><annotation encoding='application/x-tex'>i</annotation></semantics></math>.</p> |
|
|
|
4249 </li> |
|
|
|
4250 </ol> |
|
|
|
4251 |
|
|
|
4252 <p>\end{prop}</p> |
|
|
|
4253 |
|
|
|
4254 <p>This is (<a href='#DDK80'>DDK 80, Prop. 2.2. (ii)</a>, <a href='#Guillou'>Guillou, Prop. 5.3</a>, <a href='#GoerssJardine09'>Goerss & Jardine 09, V Lem. 2.4</a>).</p> |
|
|
|
4255 |
|
|
|
4256 <p>\begin{remark} In particular this means that an object is <a class='existingWikiWord' href='/nlab/show/fibrant+object'>cofibrant</a> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> if the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a> on it is <a class='existingWikiWord' href='/nlab/show/free+action'>free</a>.</p> |
|
|
|
4257 |
|
|
|
4258 <p>Hence <a class='existingWikiWord' href='/nlab/show/fibrant+replacement'>cofibrant replacement</a> is obtained by forming the <a class='existingWikiWord' href='/nlab/show/cartesian+product'>product</a> with the model <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>W</mi><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>W G_\bullet</annotation></semantics></math> for the total space of the <a class='existingWikiWord' href='/nlab/show/universal+principal+bundle'>universal principal bundle</a> over <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math> (see at <em><a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a></em> for notation and more details). \end{remark}</p> |
|
|
|
4259 |
|
|
|
4260 <p>\begin{remark} It follows that for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>,</mo><mi>A</mi><mo>∈</mo><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub></mrow><annotation encoding='application/x-tex'>X, A \in sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj}</annotation></semantics></math> the <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-categorical+hom-space'>derived hom space</a></p> |
|
|
|
4261 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4262 R Hom_G(X,A) |
|
|
|
4263 |
|
|
|
4264 </annotation></semantics></math></div> |
|
|
|
4265 <p>models the Borel <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/equivariant+cohomology'>equivariant cohomology</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> with <a class='existingWikiWord' href='/nlab/show/coefficient'>coefficients</a> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> |
|
|
|
4266 |
|
|
|
4267 <p>In particular,if <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is <a class='existingWikiWord' href='/nlab/show/fibrant+object'>fibrant</a> (the underlying simplicial set is a <a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a>) then</p> |
|
|
|
4268 |
|
|
|
4269 <ol> |
|
|
|
4270 <li> |
|
|
|
4271 <p>if the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub></mrow><annotation encoding='application/x-tex'>G_\bullet</annotation></semantics></math>-action on <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math> is trivial, then</p> |
|
|
|
4272 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>W</mi><mi>G</mi><mo>×</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><mi>Hom</mi><mo stretchy='false'>(</mo><mi>W</mi><mi>G</mi><msub><mo>×</mo> <mi>G</mi></msub><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4273 R Hom_G(X,A) |
|
|
|
4274 \simeq |
|
|
|
4275 Hom_G(W G \times X , A) |
|
|
|
4276 \simeq |
|
|
|
4277 Hom(W G \times_G X, A) |
|
|
|
4278 |
|
|
|
4279 </annotation></semantics></math></div> |
|
|
|
4280 <p>is equivalently maps of <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a> out of the <a class='existingWikiWord' href='/nlab/show/Borel+construction'>Borel construction</a> on <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>;</p> |
|
|
|
4281 </li> |
|
|
|
4282 |
|
|
|
4283 <li> |
|
|
|
4284 <p>if <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>=</mo><mo>*</mo></mrow><annotation encoding='application/x-tex'>X = \ast </annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/point'>point</a> then</p> |
|
|
|
4285 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><msub><mi>Hom</mi> <mi>G</mi></msub><mo stretchy='false'>(</mo><mi>W</mi><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><mi>Hom</mi><mo stretchy='false'>(</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo><mo>≃</mo><msup><mi>A</mi> <mrow><mi>h</mi><mi>G</mi></mrow></msup></mrow><annotation encoding='application/x-tex'> |
|
|
|
4286 R Hom_G(X,A) |
|
|
|
4287 \simeq |
|
|
|
4288 Hom_G(W G, A) |
|
|
|
4289 \simeq |
|
|
|
4290 Hom(\overline{W} G , A) |
|
|
|
4291 \simeq |
|
|
|
4292 A^{h G} |
|
|
|
4293 |
|
|
|
4294 </annotation></semantics></math></div> |
|
|
|
4295 <p>is the <a class='existingWikiWord' href='/nlab/show/homotopy+fixed+point'>homotopy fixed points</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> |
|
|
|
4296 </li> |
|
|
|
4297 </ol> |
|
|
|
4298 |
|
|
|
4299 <p>\end{remark}</p> |
|
|
|
4300 |
|
|
|
4301 <h3 id='RelationToSliceOverSimplicialClassifyingSpace'>Relation to the slice over the simplicial classifying space</h3> |
|
|
|
4302 |
|
|
|
4303 <p>\begin{prop}\label{QuillenEquivalenceToSliceOverSimplicialClassifyingSpace} For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a>, there is a pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functors</a></p> |
|
|
|
4304 <div class='maruku-equation' id='eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'><span class='maruku-eq-number'>(1)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>G</mi> <mo>•</mo></msub><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><msub><mo stretchy='false'>)</mo> <mi>proj</mi></msub><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>G</mi></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi></mrow></mover></munderover><msub><mi>sSet</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
4305 |
|
|
|
4306 G_\bullet Acts(sSet)_{proj} |
|
|
|
4307 \underoverset |
|
|
|
4308 {\underset{ \big((-) \times W G\big)/G }{\longrightarrow}} |
|
|
|
4309 {\overset{ (-) \times_{\overline{W}G} W G }{\longleftarrow}} |
|
|
|
4310 {\bot} |
|
|
|
4311 sSet_{/\overline{W}G} |
|
|
|
4312 |
|
|
|
4313 </annotation></semantics></math></div> |
|
|
|
4314 <p>which constitute a <a class='existingWikiWord' href='/nlab/show/simplicial+Quillen+adjunction'>simplicial</a> <a class='existingWikiWord' href='/nlab/show/Quillen+equivalence'>Quillen equivalence</a> between the Borel model structure (Def. \ref{BorelModelStructure}) and the <a class='existingWikiWord' href='/nlab/show/model+structure+on+an+over+category'>slice model structure</a> of the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure on simplicial sets</a> slices over the <a class='existingWikiWord' href='/nlab/show/simplicial+classifying+space'>simplicial classifying space</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow><annotation encoding='application/x-tex'>\overline{W}G</annotation></semantics></math>.,</p> |
|
|
|
4315 |
|
|
|
4316 <p>\end{prop}</p> |
|
|
|
4317 |
|
|
|
4318 <p>(<a href='#DDK80'>DDK 80, Prop. 2.3, Prop. 2.4</a>) Here:</p> |
|
|
|
4319 |
|
|
|
4320 <ul> |
|
|
|
4321 <li> |
|
|
|
4322 <p>the <a class='existingWikiWord' href='/nlab/show/right+adjoint'>right adjoint</a> forms <a class='existingWikiWord' href='/nlab/show/associated+bundle'>associated bundles</a> to <a class='existingWikiWord' href='/nlab/show/universal+principal+bundle'>universal principal bundles</a></p> |
|
|
|
4323 </li> |
|
|
|
4324 |
|
|
|
4325 <li> |
|
|
|
4326 <p>the <a class='existingWikiWord' href='/nlab/show/left+adjoint'>left adjoint</a> forms <a class='existingWikiWord' href='/nlab/show/fiber+sequence'>homotopy fibers</a>.</p> |
|
|
|
4327 </li> |
|
|
|
4328 </ul> |
|
|
|
4329 |
|
|
|
4330 <p>In fact, these are <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor'>enriched functors</a> which induced an <a class='existingWikiWord' href='/nlab/show/equivalence+of+%28infinity%2C1%29-categories'>equivalence of (infinity,1)-categories</a> between the <a class='existingWikiWord' href='/nlab/show/simplicial+localization'>simplicial localizations</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub><mi>sSetCat</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub><mo>,</mo><mi>sSet</mi><msub><mo maxsize='1.2em' minsize='1.2em'>)</mo> <mi>proj</mi></msub><mo>≃</mo><msub><mi>L</mi> <mi>W</mi></msub><msub><mi>sSet</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>H</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>L_W sSetCat\big(\mathbf{B}G_\bullet, sSet\big)_{proj} \simeq L_W sSet_{/\overline{W}H}</annotation></semantics></math> (<a href='#DDK80'>DDK 80, Prop. 2.5</a>).</p> |
|
|
|
4331 |
|
|
|
4332 <p>This kind of relation is discussed in more detail at <em><a class='existingWikiWord' href='/nlab/show/infinity-action'>∞-action</a></em>.</p> |
|
|
|
4333 |
|
|
|
4334 <p>\begin{remark}\label{sSetEnrichmentOfAdjunctionToSliceOverSimpClassSpace} <strong>(sSet-enrichement of the adjunction)</strong> \linebreak The statement that <a class='maruku-eqref' href='#eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'>(1)</a> is an <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<em><a class='existingWikiWord' href='/nlab/show/enriched+adjunction'>enriched adjunction</a></em> is not made explicit in <a href='#DDK80'>DDK 80</a>; there it only says that the functors form a plain <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjunction</a> (<a href='#DDK80'>DDK 80, Prop. 2.3</a>) and that they are each <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor'>enriched functors</a> (<a href='#DDK80'>DDK 80, Prop. 2.4</a>).</p> |
|
|
|
4335 |
|
|
|
4336 <p>The remaining observation that we have a <a class='existingWikiWord' href='/nlab/show/natural+isomorphism'>natural isomorphism</a> of <a class='existingWikiWord' href='/nlab/show/SimpSet'>sSet</a>-<a class='existingWikiWord' href='/nlab/show/hom-object'>hom-objects</a></p> |
|
|
|
4337 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>[</mo><mi>X</mi><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mo>,</mo><mspace width='thinmathspace'></mspace><mi>V</mi><mo maxsize='1.2em' minsize='1.2em'>]</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>[</mo><mi>X</mi><mo>,</mo><mspace width='thinmathspace'></mspace><mo stretchy='false'>(</mo><mi>V</mi><mo>×</mo><mi>W</mi><mi>G</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>]</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4338 \big[ |
|
|
|
4339 X \times_{\overline{W}G} W G, |
|
|
|
4340 \, |
|
|
|
4341 V |
|
|
|
4342 \big] |
|
|
|
4343 \;\simeq\; |
|
|
|
4344 \big[ |
|
|
|
4345 X, |
|
|
|
4346 \, |
|
|
|
4347 (V \times W G)/G |
|
|
|
4348 \big] |
|
|
|
4349 |
|
|
|
4350 </annotation></semantics></math></div> |
|
|
|
4351 <p>hence</p> |
|
|
|
4352 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>V</mi><mo maxsize='1.8em' minsize='1.8em'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo stretchy='false'>(</mo><mi>V</mi><mo>×</mo><mi>W</mi><mi>G</mi><mo stretchy='false'>)</mo><mo stretchy='false'>/</mo><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4353 Hom |
|
|
|
4354 \Big( |
|
|
|
4355 \big( X \times_{\overline{W}G} W G \big) \times \Delta[\bullet], |
|
|
|
4356 \, |
|
|
|
4357 V |
|
|
|
4358 \Big) |
|
|
|
4359 \;\simeq\; |
|
|
|
4360 Hom |
|
|
|
4361 \big( |
|
|
|
4362 X \times \Delta[\bullet], |
|
|
|
4363 \, |
|
|
|
4364 (V \times W G)/G |
|
|
|
4365 \big) |
|
|
|
4366 |
|
|
|
4367 </annotation></semantics></math></div> |
|
|
|
4368 <p>follows from the plain adjunction and the natural isomorphism</p> |
|
|
|
4369 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>X</mi><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>G</mi></mrow></msub><mi>W</mi><mi>G</mi><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4370 (X \times_{\overline{W}G} W G) \times \Delta[\bullet] |
|
|
|
4371 \;\simeq\; |
|
|
|
4372 (X \times \Delta[\bullet]) \times_{\overline{W}G} W G |
|
|
|
4373 \,, |
|
|
|
4374 |
|
|
|
4375 </annotation></semantics></math></div> |
|
|
|
4376 <p>which, in turn, follows, for instance, via the <a class='existingWikiWord' href='/nlab/show/pasting+law+for+pullbacks'>pasting law</a>:</p> |
|
|
|
4377 |
|
|
|
4378 <p>\begin{tikzcd} { { (X \times_{\overline{W}G} W G) \times \Delta[k] } \atop { \mathllap{\simeq} (X \times \Delta[k]) \times_{\overline{W}G} W G } } \ar[r] \ar[d] \ar[dr,phantom,\mbox{\tiny\rm(pb)}] & X \times \Delta[k] \ar[d, \mathrm{pr}_1] \ X \times_{\overline{W}G} W G \ar[r] \ar[d] \ar[dr,phantom,\mbox{\tiny\rm(pb)}] & X \ar[d] \ W G \ar[r] & \overline{W}G \,. \end{tikzcd}</p> |
|
|
|
4379 |
|
|
|
4380 <p>\end{remark}</p> |
|
|
|
4381 |
|
|
|
4382 <h3 id='RelationToModelStructureOnPlainSimplicialSets'>Relation to the model structure on plain simplicial sets</h3> |
|
|
|
4383 |
|
|
|
4384 <p>For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mspace width='thinmathspace'></mspace><mo>∈</mo><mspace width='thinmathspace'></mspace><mi>Groups</mi><mo stretchy='false'>(</mo><mi>sSets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{G} \,\in\, Groups(sSets)</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a>, write <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{G}Actions(sSets)</annotation></semantics></math> for the <a class='existingWikiWord' href='/nlab/show/category'>category</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>actions</a> on <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial sets</a>.</p> |
|
|
|
4385 |
|
|
|
4386 <p>\begin{proposition}\label{CofreeAction} <strong>(underlying simplicial sets and cofree simplicial action)</strong> \linebreak The <a class='existingWikiWord' href='/nlab/show/forgetful+functor'>forgetful functor</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>undrl</mi></mrow><annotation encoding='application/x-tex'>undrl</annotation></semantics></math> from <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mi>Actions</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}Actions</annotation></semantics></math> to underlying simplicial sets is a <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>left Quillen functor</a> from the Borel model structure (Def. \ref{BorelModelStructure}) to the <a class='existingWikiWord' href='/nlab/show/classical+model+structure+on+simplicial+sets'>classical model structure on simplicial sets</a>.</p> |
|
|
|
4387 |
|
|
|
4388 <p>Its <a class='existingWikiWord' href='/nlab/show/right+adjoint'>right adjoint</a></p> |
|
|
|
4389 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSet</mi><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></munder><mover><mo>⟵</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>undrl</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover></munderover><mi>𝒢</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4390 sSet |
|
|
|
4391 \underoverset |
|
|
|
4392 {\underset{ \;\;\; [\mathcal{G},-] \;\;\; }{\longrightarrow}} |
|
|
|
4393 {\overset{ \;\;\; undrl \;\;\; }{\longleftarrow}} |
|
|
|
4394 {\bot} |
|
|
|
4395 \mathcal{G}Actions(sSet) |
|
|
|
4396 |
|
|
|
4397 </annotation></semantics></math></div> |
|
|
|
4398 <p>sends <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒳</mi><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\mathcal{X} \in sSet</annotation></semantics></math> to</p> |
|
|
|
4399 |
|
|
|
4400 <ul> |
|
|
|
4401 <li> |
|
|
|
4402 <p>the simplicial set</p> |
|
|
|
4403 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mi>𝒳</mi><mo stretchy='false'>]</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><msub><mi>Hom</mi> <mi>sSet</mi></msub><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mo>•</mo><mo stretchy='false'>]</mo><mo>,</mo><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
4404 [\mathcal{G},\mathcal{X}] |
|
|
|
4405 \;\coloneqq\; |
|
|
|
4406 Hom_{sSet}\big( \mathcal{G} \times \Delta[\bullet], \mathcal{X}\big) |
|
|
|
4407 \;\;\; |
|
|
|
4408 \in |
|
|
|
4409 sSet |
|
|
|
4410 |
|
|
|
4411 </annotation></semantics></math></div></li> |
|
|
|
4412 |
|
|
|
4413 <li> |
|
|
|
4414 <p>equipped with the <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}</annotation></semantics></math>-action</p> |
|
|
|
4415 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mo>×</mo><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mi>𝒳</mi><mo stretchy='false'>]</mo><mover><mo>⟶</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⋅</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></mover><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
4416 \mathcal{G} \times [\mathcal{G},\mathcal{X}] |
|
|
|
4417 \overset{ (-) \cdot (-) }{\longrightarrow} |
|
|
|
4418 \mathcal{G} |
|
|
|
4419 |
|
|
|
4420 </annotation></semantics></math></div> |
|
|
|
4421 <p>which in degree <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/function'>function</a></p> |
|
|
|
4422 <div class='maruku-equation' id='eq:CofreeSimplicialActionComponentFunctions'><span class='maruku-eq-number'>(2)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Hom</mi><mo stretchy='false'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mi>𝒢</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>×</mo><mspace width='thinmathspace'></mspace><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>⟶</mo><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4423 |
|
|
|
4424 Hom(\Delta[n], \mathcal{G}) |
|
|
|
4425 \,\times\, |
|
|
|
4426 Hom |
|
|
|
4427 \big( |
|
|
|
4428 \mathcal{G} \times \Delta[n], |
|
|
|
4429 \, |
|
|
|
4430 \mathcal{X} |
|
|
|
4431 \big) |
|
|
|
4432 \longrightarrow |
|
|
|
4433 Hom |
|
|
|
4434 \big( |
|
|
|
4435 \mathcal{G} \times \Delta[n], |
|
|
|
4436 \, |
|
|
|
4437 \mathcal{X} |
|
|
|
4438 \big) |
|
|
|
4439 |
|
|
|
4440 </annotation></semantics></math></div> |
|
|
|
4441 <p>that sends</p> |
|
|
|
4442 <div class='maruku-equation' id='eq:CofreeSimplicialActionInComponents'><span class='maruku-eq-number'>(3)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd></mtd> <mtd><mo maxsize='1.8em' minsize='1.8em'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mrow><msub><mi>g</mi> <mi>n</mi></msub></mrow></mover><mi>𝒢</mi><mo>,</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mi>ϕ</mi></mover><mi>𝒳</mi><mo>,</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr> <mtr><mtd><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>↦</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mtd> <mtd><mo maxsize='1.8em' minsize='1.8em'>(</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><mi>diag</mi></mrow></mover><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>⟶</mo><mrow><mi>id</mi><mo>×</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>×</mo><mi>id</mi></mrow></mover><mi>𝒢</mi><mo>×</mo><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⋅</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>id</mi></mrow></mover><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mover><mo>→</mo><mi>ϕ</mi></mover><mi>𝒳</mi><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
4443 |
|
|
|
4444 \begin{aligned} |
|
|
|
4445 & |
|
|
|
4446 \Big( |
|
|
|
4447 \Delta[n] \overset{g_n}{\to} \mathcal{G}, |
|
|
|
4448 \; |
|
|
|
4449 \mathcal{G}\times \Delta[n] |
|
|
|
4450 \overset{\phi}{\to} |
|
|
|
4451 \mathcal{X}, |
|
|
|
4452 \Big) |
|
|
|
4453 \\ |
|
|
|
4454 \;\;\mapsto\;\; |
|
|
|
4455 & |
|
|
|
4456 \Big( |
|
|
|
4457 \mathcal{G} \times \Delta[n] |
|
|
|
4458 \overset{id \times diag}{\longrightarrow} |
|
|
|
4459 \mathcal{G} \times \Delta[n] \times \Delta[n] |
|
|
|
4460 \overset{ id \times g_n \times id }{\longrightarrow} |
|
|
|
4461 \mathcal{G} \times \mathcal{G} \times \Delta[n] |
|
|
|
4462 \overset{(-)\cdot(-) \times id}{\to} |
|
|
|
4463 \mathcal{G} \times \Delta[n] |
|
|
|
4464 \overset{\phi}{\to} |
|
|
|
4465 \mathcal{X} |
|
|
|
4466 \Big) |
|
|
|
4467 \end{aligned} |
|
|
|
4468 |
|
|
|
4469 </annotation></semantics></math></div></li> |
|
|
|
4470 </ul> |
|
|
|
4471 |
|
|
|
4472 <p>\end{proposition}</p> |
|
|
|
4473 |
|
|
|
4474 <p>Here and in the following proof we make free use of the <a class='existingWikiWord' href='/nlab/show/Yoneda+lemma'>Yoneda lemma</a> <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijection</a></p> |
|
|
|
4475 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Hom</mi> <mi>sSet</mi></msub><mo stretchy='false'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>,</mo><mi>𝒮</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msub><mi>𝒮</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
4476 Hom_{sSet}(\Delta[n], \mathcal{S}) \;\simeq\; \mathcal{S}_n |
|
|
|
4477 |
|
|
|
4478 </annotation></semantics></math></div> |
|
|
|
4479 <p>for any <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> and for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi><mover><mo>↪</mo><mi>y</mi></mover><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\Delta[n] \in \Delta \overset{y}{\hookrightarrow} sSet</annotation></semantics></math> the simplicial <a class='existingWikiWord' href='/nlab/show/simplex'>n-simplex</a>.</p> |
|
|
|
4480 |
|
|
|
4481 <p>\begin{proof}</p> |
|
|
|
4482 |
|
|
|
4483 <p>We already know from Def. \ref{BorelModelStructure} that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>underl</mi></mrow><annotation encoding='application/x-tex'>underl</annotation></semantics></math> preserves all <a class='existingWikiWord' href='/nlab/show/weak+equivalence'>weak equivalences</a> and from Prop. \ref{CofibrationsOfSimplicialActions} that it preserves all <a class='existingWikiWord' href='/nlab/show/cofibration'>cofibrations</a>. Therefore it is a <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>left Quillen functor</a> as soon as it is a <a class='existingWikiWord' href='/nlab/show/left+adjoint'>left adjoint</a> at all.</p> |
|
|
|
4484 |
|
|
|
4485 <p>The idea of the existence of the <a class='existingWikiWord' href='/nlab/show/free+functor'>cofree</a> <a class='existingWikiWord' href='/nlab/show/right+adjoint'>right adjoint</a> to <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>undrl</mi></mrow><annotation encoding='application/x-tex'>undrl</annotation></semantics></math> is familiar from <a class='existingWikiWord' href='/nlab/show/topological+G-space'>topological G-spaces</a> (see the section on <a href='topological+G-space#CoinducedActions'>coinduced actions</a> there), where it can be easily expressed point-wise in <a class='existingWikiWord' href='/nlab/show/general+topology'>point-set topology</a>. The formula <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a> adapts this idea to simplicial sets. Its form makes manifest that this gives a simplicial homomorphism, and with this the adjointness follows the usual logic by focusing on the image of the non-degenerate top-degree cell in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta[n]</annotation></semantics></math>:</p> |
|
|
|
4486 |
|
|
|
4487 <p>To check that <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a> really gives the right adjoint, it is sufficient to check the corresponding <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a>, hence to check for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒫</mi><mo>∈</mo><mi>𝒢</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{P} \in \mathcal{G}Actions(sSet)</annotation></semantics></math>, and <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒳</mi><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\mathcal{X} \in sSet</annotation></semantics></math>, that we have a <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijection</a> of <a class='existingWikiWord' href='/nlab/show/hom-set'>hom-sets</a> of the form</p> |
|
|
|
4488 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_71' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo maxsize='1.2em' minsize='1.2em'>{</mo><mi>𝒫</mi><mover><mo>⟶</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mo stretchy='false'>[</mo><mi>𝒢</mi><mo>,</mo><mi>𝒳</mi><mo stretchy='false'>]</mo><mo maxsize='1.2em' minsize='1.2em'>}</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mover><mo>↔</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mover><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><mo>˜</mo></mover><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>{</mo><mi>undrl</mi><mo stretchy='false'>(</mo><mi>𝒫</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>}</mo><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4489 \big\{ |
|
|
|
4490 \mathcal{P} |
|
|
|
4491 \overset{\;\;\phi_{(-)}\;\;}{\longrightarrow} |
|
|
|
4492 [\mathcal{G}, \mathcal{X}] |
|
|
|
4493 \big\} |
|
|
|
4494 \;\;\;\overset{ \;\; \widetilde{(-)} \;\; }{\leftrightarrow}\;\;\; |
|
|
|
4495 \big\{ |
|
|
|
4496 undrl(\mathcal{P}) |
|
|
|
4497 \overset{\;\; {\widetilde \phi}_{(-)} \;\; }{\longrightarrow} |
|
|
|
4498 \mathcal{X} |
|
|
|
4499 \big\} |
|
|
|
4500 \,. |
|
|
|
4501 |
|
|
|
4502 </annotation></semantics></math></div> |
|
|
|
4503 <p>So given</p> |
|
|
|
4504 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_72' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>p</mi> <mi>n</mi></msub><mo>↦</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mo>×</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>→</mo><mi>𝒳</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4505 \phi_{(-)} |
|
|
|
4506 \;\colon\; |
|
|
|
4507 p_n |
|
|
|
4508 \mapsto |
|
|
|
4509 \big( |
|
|
|
4510 \phi_{p_n} |
|
|
|
4511 \;\colon\; |
|
|
|
4512 \mathcal{G} \times \Delta[n] \to \mathcal{X} |
|
|
|
4513 \big) |
|
|
|
4514 |
|
|
|
4515 </annotation></semantics></math></div> |
|
|
|
4516 <p>on the left, define</p> |
|
|
|
4517 <div class='maruku-equation' id='eq:AdjunctOfHomomorphismToCofreeSimplicialAction'><span class='maruku-eq-number'>(4)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_73' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>p</mi> <mi>n</mi></msub><mo>↦</mo><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><msub><mi>𝒳</mi> <mi>n</mi></msub><mspace width='thinmathspace'></mspace><mo>,</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4518 |
|
|
|
4519 \widetilde \phi_{(-)} |
|
|
|
4520 \;\colon\; |
|
|
|
4521 p_n |
|
|
|
4522 \mapsto |
|
|
|
4523 \phi_{p_n}(e_n, \sigma_n) |
|
|
|
4524 \;\in\; |
|
|
|
4525 \mathcal{X}_n |
|
|
|
4526 \,, |
|
|
|
4527 |
|
|
|
4528 </annotation></semantics></math></div> |
|
|
|
4529 <p>where <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_74' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>e</mi> <mi>n</mi></msub><mo>∈</mo><msub><mi>𝒢</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e_n \in \mathcal{G}_n</annotation></semantics></math> denotes the <a class='existingWikiWord' href='/nlab/show/identity+element'>neutral element</a> in degree <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_75' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{N}</annotation></semantics></math> and where <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_76' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>σ</mi> <mi>n</mi></msub><mo>∈</mo><mo stretchy='false'>(</mo><mi>Δ</mi><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><msub><mo stretchy='false'>)</mo> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\sigma_n \in (\Delta[n])_n</annotation></semantics></math> denotes the unique non-degenerate element <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_77' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-cell in the <a class='existingWikiWord' href='/nlab/show/simplex'>n-simplex</a>.</p> |
|
|
|
4530 |
|
|
|
4531 <p>It is clear that this is a <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformation</a> in <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_78' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_79' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math>. We need to show that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_80' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub><mo lspace='verythinmathspace'>:</mo><mi>undrl</mi><mo stretchy='false'>(</mo><mi>P</mi><mo stretchy='false'>)</mo><mo>→</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>{\widetilde \phi}_{(-)} \colon undrl(P) \to X</annotation></semantics></math> uniquely determines all of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_81' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{(-)}</annotation></semantics></math>.</p> |
|
|
|
4532 |
|
|
|
4533 <p>To that end, observe for any <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_82' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>g</mi> <mi>n</mi></msub><mo>∈</mo><msub><mi>𝒢</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>g_n \in \mathcal{G}_n</annotation></semantics></math> the following sequence of identifications:</p> |
|
|
|
4534 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_83' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><msub><mi>g</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>ϕ</mi> <mrow><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mi>ϕ</mi> <mrow><msub><mi>g</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub><mo stretchy='false'>(</mo><msub><mi>e</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>σ</mi> <mi>n</mi></msub><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>=</mo><mspace width='thickmathspace'></mspace><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><msub><mi>g</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>p</mi> <mi>n</mi></msub></mrow></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
4535 \begin{aligned} |
|
|
|
4536 \phi_{p_n}(g_n, \sigma_n) |
|
|
|
4537 & \;=\; |
|
|
|
4538 \phi_{p_n}( e_n \cdot g_n, \sigma_n ) |
|
|
|
4539 \\ |
|
|
|
4540 & \;=\; |
|
|
|
4541 \big( |
|
|
|
4542 g_n \cdot \phi_{p_n} |
|
|
|
4543 \big) |
|
|
|
4544 ( e_n, \sigma_n ) |
|
|
|
4545 \\ |
|
|
|
4546 & \;=\; |
|
|
|
4547 \phi_{ g_n \cdot p_n } |
|
|
|
4548 (e_n, \sigma_n) |
|
|
|
4549 \\ |
|
|
|
4550 & \;=\; |
|
|
|
4551 {\widetilde \phi}_{g_n \cdot p_n} |
|
|
|
4552 \end{aligned} |
|
|
|
4553 |
|
|
|
4554 </annotation></semantics></math></div> |
|
|
|
4555 <p>Here:</p> |
|
|
|
4556 |
|
|
|
4557 <ul> |
|
|
|
4558 <li> |
|
|
|
4559 <p>the first step is the unit law in the component group <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_84' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>𝒢</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{G}_n</annotation></semantics></math>;</p> |
|
|
|
4560 </li> |
|
|
|
4561 |
|
|
|
4562 <li> |
|
|
|
4563 <p>the second step uses the definition <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a> of the cofree action;</p> |
|
|
|
4564 </li> |
|
|
|
4565 |
|
|
|
4566 <li> |
|
|
|
4567 <p>the third step is the assumption that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_85' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{(-)}</annotation></semantics></math> is a homomorphism of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_86' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'>\mathcal{G}</annotation></semantics></math>-actions (<a class='existingWikiWord' href='/nlab/show/equivariant'>equivariance</a>);</p> |
|
|
|
4568 </li> |
|
|
|
4569 |
|
|
|
4570 <li> |
|
|
|
4571 <p>the fourth step is the definition <a class='maruku-eqref' href='#eq:AdjunctOfHomomorphismToCofreeSimplicialAction'>(4)</a>.</p> |
|
|
|
4572 </li> |
|
|
|
4573 </ul> |
|
|
|
4574 |
|
|
|
4575 <p>These identifications show that <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_87' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{(-)}</annotation></semantics></math> is uniquely determined by <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_88' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><msub><mover><mi>ϕ</mi><mo>˜</mo></mover> <mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{\widetilde \phi_{(-)}}</annotation></semantics></math>, and vice versa.</p> |
|
|
|
4576 |
|
|
|
4577 <p>\end{proof}</p> |
|
|
|
4578 |
|
|
|
4579 <p>\begin{example}\label{BZActionOnInertiaGroupoid} <strong>(<math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_89' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}\mathbb{Z}</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-action'>2-action</a> on <a class='existingWikiWord' href='/nlab/show/inertia+orbifold'>inertia groupoid</a>)</strong> \linebreak Let</p> |
|
|
|
4580 |
|
|
|
4581 <ul> |
|
|
|
4582 <li> |
|
|
|
4583 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_90' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi><mo>∈</mo><mi>Groups</mi><mo stretchy='false'>(</mo><mi>Sets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>G \in Groups(Sets)</annotation></semantics></math></p> |
|
|
|
4584 |
|
|
|
4585 <p>be a <a class='existingWikiWord' href='/nlab/show/discrete+group'>discrete group</a>,</p> |
|
|
|
4586 </li> |
|
|
|
4587 |
|
|
|
4588 <li> |
|
|
|
4589 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_91' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>∈</mo><mi>G</mi><mi>Actions</mi><mo stretchy='false'>(</mo><mi>Sets</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>X \in G Actions(Sets)</annotation></semantics></math></p> |
|
|
|
4590 |
|
|
|
4591 <p>be a <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_92' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/action'>action</a>,</p> |
|
|
|
4592 </li> |
|
|
|
4593 |
|
|
|
4594 <li> |
|
|
|
4595 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_93' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒳</mi><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>X</mi><mo>⫽</mo><mi>G</mi><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>N</mi><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>G</mi><mo>⇉</mo><mi>X</mi><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>=</mo><mspace width='thinmathspace'></mspace><mi>X</mi><mo>×</mo><msup><mi>G</mi> <mrow><msup><mo>×</mo> <mo>•</mo></msup></mrow></msup><mo>∈</mo><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>\mathcal{X} \;\coloneqq\; X \sslash G \;\coloneqq\; N( X \times G \rightrightarrows X ) \,=\, X \times G^{\times^\bullet} \in sSet</annotation></semantics></math></p> |
|
|
|
4596 |
|
|
|
4597 <p>the <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> which is the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> of its <a class='existingWikiWord' href='/nlab/show/action+groupoid'>action groupoid</a> (a model for its <a class='existingWikiWord' href='/nlab/show/homotopy+quotient'>homotopy quotient</a>),</p> |
|
|
|
4598 </li> |
|
|
|
4599 |
|
|
|
4600 <li> |
|
|
|
4601 <p><math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_94' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mspace width='thinmathspace'></mspace><mo>≔</mo><mspace width='thinmathspace'></mspace><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi><mspace width='thinmathspace'></mspace><mo>≔</mo><mspace width='thinmathspace'></mspace><mi>N</mi><mo stretchy='false'>(</mo><mi>ℤ</mi><mo>⇉</mo><mo>*</mo><mo stretchy='false'>)</mo><mspace width='thinmathspace'></mspace><mo>≔</mo><mspace width='thinmathspace'></mspace><msup><mi>ℤ</mi> <mrow><msup><mo>×</mo> <mo>•</mo></msup></mrow></msup><mspace width='thinmathspace'></mspace><mo>∈</mo><mspace width='thinmathspace'></mspace><mi>Groups</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{G} \,\coloneqq\, \mathbf{B}\mathbb{Z} \,\coloneqq\, N(\mathbb{Z} \rightrightarrows \ast) \,\coloneqq\, \mathbb{Z}^{\times^\bullet} \,\in\, Groups(sSet)</annotation></semantics></math></p> |
|
|
|
4602 |
|
|
|
4603 <p>the <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial group</a> which is the <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> of the <a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a> that is the <a class='existingWikiWord' href='/nlab/show/delooping+groupoid'>delooping groupoid</a> of the additive group of <a class='existingWikiWord' href='/nlab/show/integer'>integers</a>.</p> |
|
|
|
4604 </li> |
|
|
|
4605 </ul> |
|
|
|
4606 |
|
|
|
4607 <p>Then the <a class='existingWikiWord' href='/nlab/show/functor+category'>functor groupoid</a></p> |
|
|
|
4608 <div class='maruku-equation' id='eq:InertiaGroupoidAsFunctorGroupoidOutOfBZ'><span class='maruku-eq-number'>(5)</span><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_95' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>Λ</mi><mo stretchy='false'>(</mo><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi><mo stretchy='false'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>[</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi><mo>,</mo><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi><mo maxsize='1.2em' minsize='1.2em'>]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Func</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mi>ℤ</mi><mo>⇉</mo><mo>*</mo><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo stretchy='false'>(</mo><mi>X</mi><mo>×</mo><mi>G</mi><mo>⇉</mo><mi>X</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><munder><mo>←</mo><mrow><mo>∈</mo><mi mathvariant='normal'>W</mi></mrow></munder><mspace width='thickmathspace'></mspace><munder><mo lspace='thinmathspace' rspace='thinmathspace'>∐</mo><mrow><mo stretchy='false'>[</mo><mi>g</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>ConjCl</mi><mo stretchy='false'>(</mo><mi>G</mi><mo stretchy='false'>)</mo></mrow></munder><mo maxsize='1.8em' minsize='1.8em'>(</mo><msup><mi>X</mi> <mi>g</mi></msup><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><msub><mi>C</mi> <mi>g</mi></msub><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
4609 |
|
|
|
4610 \begin{aligned} |
|
|
|
4611 \Lambda(X \!\sslash\! G) |
|
|
|
4612 & \;\coloneqq\; |
|
|
|
4613 \big[ |
|
|
|
4614 \mathbf{B}\mathbb{Z}, X \!\sslash\! G |
|
|
|
4615 \big] |
|
|
|
4616 \\ |
|
|
|
4617 & |
|
|
|
4618 \;\simeq\; |
|
|
|
4619 Func |
|
|
|
4620 \big( |
|
|
|
4621 (\mathbb{Z} \rightrightarrows \ast), |
|
|
|
4622 \, |
|
|
|
4623 (X \times G \rightrightarrows X) |
|
|
|
4624 \big) |
|
|
|
4625 \\ |
|
|
|
4626 & \;\underset{\in \mathrm{W}}{\leftarrow}\; |
|
|
|
4627 \underset{ |
|
|
|
4628 [g] \in ConjCl(G) |
|
|
|
4629 }{\coprod} |
|
|
|
4630 \Big( |
|
|
|
4631 X^{g} \!\sslash\! C_g |
|
|
|
4632 \Big) |
|
|
|
4633 \end{aligned} |
|
|
|
4634 |
|
|
|
4635 </annotation></semantics></math></div> |
|
|
|
4636 <p>is known as the <em><a class='existingWikiWord' href='/nlab/show/inertia+orbifold'>inertia groupoid</a></em> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_96' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi></mrow><annotation encoding='application/x-tex'>X \!\sslash\! G</annotation></semantics></math>. Here</p> |
|
|
|
4637 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_97' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ConjCla</mi><mo stretchy='false'>(</mo><mi>G</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>G</mi><msub><mo stretchy='false'>/</mo> <mi>ad</mi></msub><mi>G</mi><mspace width='thinmathspace'></mspace><mo>,</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><msub><mi>C</mi> <mi>g</mi></msub><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>{</mo><mi>h</mi><mo>∈</mo><mi>G</mi><mspace width='thinmathspace'></mspace><mrow><mo>|</mo><mspace width='thinmathspace'></mspace><mi>h</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>g</mi><mo>⋅</mo><mi>h</mi></mrow><mo maxsize='1.2em' minsize='1.2em'>}</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4638 ConjCla(G) |
|
|
|
4639 \;\coloneqq\; |
|
|
|
4640 G/_{ad} G |
|
|
|
4641 \,, |
|
|
|
4642 \;\;\;\;\;\;\;\;\;\;\; |
|
|
|
4643 C_g |
|
|
|
4644 \;\coloneqq\; |
|
|
|
4645 \big\{ |
|
|
|
4646 h \in G |
|
|
|
4647 \,\left\vert\, |
|
|
|
4648 h \cdot g = g \cdot h |
|
|
|
4649 \right. |
|
|
|
4650 \big\} |
|
|
|
4651 |
|
|
|
4652 </annotation></semantics></math></div> |
|
|
|
4653 <p>denotes, respectively, the set of <a class='existingWikiWord' href='/nlab/show/conjugacy+class'>conjugacy classes</a> of elements of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_98' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math>, and the <a class='existingWikiWord' href='/nlab/show/centralizer'>centralizer</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_99' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>{</mo><mi>g</mi><mo stretchy='false'>}</mo><mo>⊂</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\{g\} \subset G</annotation></semantics></math> – this data serves to express the <a class='existingWikiWord' href='/nlab/show/equivalence+of+categories'>equivalent</a> <a class='existingWikiWord' href='/nlab/show/skeleton'>skeleton</a> of the inertia groupoid in the last line of <a class='maruku-eqref' href='#eq:InertiaGroupoidAsFunctorGroupoidOutOfBZ'>(5)</a>.</p> |
|
|
|
4654 |
|
|
|
4655 <p>Now, by Prop. \ref{CofreeAction} the inertia groupoid <a class='maruku-eqref' href='#eq:InertiaGroupoidAsFunctorGroupoidOutOfBZ'>(5)</a> carries a canonical <a class='existingWikiWord' href='/nlab/show/infinity-action'>2-action</a> of the <a class='existingWikiWord' href='/nlab/show/2-group'>2-group</a> <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_100' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}\mathbb{Z}</annotation></semantics></math>:</p> |
|
|
|
4656 |
|
|
|
4657 <p>By the formula <a class='maruku-eqref' href='#eq:CofreeSimplicialActionInComponents'>(3)</a>, for <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_101' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℤ</mi></mrow><annotation encoding='application/x-tex'>n \in \mathbb{Z}</annotation></semantics></math> the 2-group element in degree 1</p> |
|
|
|
4658 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_102' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathcolor='purple'><mi>n</mi></mstyle><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><mi>Δ</mi><mo stretchy='false'>[</mo><mn>1</mn><mo stretchy='false'>]</mo><mo>⟶</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
4659 {\color{purple}n} |
|
|
|
4660 \;\colon\; |
|
|
|
4661 \Delta[1] |
|
|
|
4662 \longrightarrow |
|
|
|
4663 \mathbf{B}G |
|
|
|
4664 |
|
|
|
4665 </annotation></semantics></math></div> |
|
|
|
4666 <p>acts on the morphisms</p> |
|
|
|
4667 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_103' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>x</mi><mo>,</mo><mi>g</mi><mo stretchy='false'>)</mo><mover><mo>⟶</mo><mi>h</mi></mover><mo stretchy='false'>(</mo><mi>h</mi><mo>⋅</mo><mi>x</mi><mo>,</mo><mi>g</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><mi>Λ</mi><mo stretchy='false'>(</mo><mi>X</mi><mspace width='negativethinmathspace'></mspace><mo>⫽</mo><mspace width='negativethinmathspace'></mspace><mi>G</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4668 (x,g) \overset{h}{\longrightarrow} (h\cdot x, g) |
|
|
|
4669 \;\;\; |
|
|
|
4670 \in |
|
|
|
4671 \; |
|
|
|
4672 \Lambda(X \!\sslash\! G) |
|
|
|
4673 |
|
|
|
4674 </annotation></semantics></math></div> |
|
|
|
4675 <p>of the inertia groupoid as follows (recall the nature of <a class='existingWikiWord' href='/nlab/show/product+of+simplices'>products of simplices</a>):</p> |
|
|
|
4676 |
|
|
|
4677 <p><img src='https://ncatlab.org/nlab/files/BZActionOnInertiaGroupoid20210624.jpg' width='800'/></p> |
|
|
|
4678 |
|
|
|
4679 <p>\end{example}</p> |
|
|
|
4680 |
|
|
|
4681 <h3 id='relation_to_the_fine_model_structure_of_equivariant_homotopy_theory'>Relation to the fine model structure of equivariant homotopy theory</h3> |
|
|
|
4682 |
|
|
|
4683 <p>The <a class='existingWikiWord' href='/nlab/show/identity+functor'>identity functor</a> gives a <a class='existingWikiWord' href='/nlab/show/Quillen+adjunction'>Quillen adjunction</a> between the Borel model structure and <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a> (<a href='#Guillou'>Guillou, section 5</a>).</p> |
|
|
|
4684 |
|
|
|
4685 <p>The left adjoint is</p> |
|
|
|
4686 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_104' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>L</mi><mo>=</mo><mi>id</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>coarse</mi></msub><mo>⟶</mo><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>fine</mi></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
4687 L = id |
|
|
|
4688 \;\colon\; |
|
|
|
4689 G_\bullet Act_{coarse} |
|
|
|
4690 \longrightarrow |
|
|
|
4691 G_\bullet Act_{fine} |
|
|
|
4692 |
|
|
|
4693 </annotation></semantics></math></div> |
|
|
|
4694 <p>from the Borel model structure to the genuine <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a>.</p> |
|
|
|
4695 |
|
|
|
4696 <p>Because:</p> |
|
|
|
4697 |
|
|
|
4698 <p>First of all, by (<a href='#Guillou'>Guillou, theorem 3.12, example 4.2</a>) <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_105' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>sSet</mi> <mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><msub><mi>G</mi> <mo>•</mo></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>sSet^{\mathbf{B}G_\bullet}</annotation></semantics></math> does carry a fine model structure. By (<a href='#Guillou'>Guillou, last line of page 3</a>) the fibrations and weak equivalences here are those maps which are ordinary fibrations and weak equivalences, respectively, on <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_106' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/fixed+point'>fixed point</a> simplicial sets, for all subgroups <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_107' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>H</mi></mrow><annotation encoding='application/x-tex'>H</annotation></semantics></math>. This includes in particular the trivial subgroup and hence the identity functor</p> |
|
|
|
4699 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_108' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>R</mi><mo>=</mo><mi>id</mi><mspace width='thickmathspace'></mspace><mo lspace='verythinmathspace'>:</mo><mspace width='thickmathspace'></mspace><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>fine</mi></msub><mo>⟶</mo><msub><mi>G</mi> <mo>•</mo></msub><msub><mi>Act</mi> <mi>coarse</mi></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
4700 R = id \;\colon\; G_\bullet Act_{fine} \longrightarrow G_\bullet Act_{coarse} |
|
|
|
4701 |
|
|
|
4702 </annotation></semantics></math></div> |
|
|
|
4703 <p>is right Quillen.</p> |
|
|
|
4704 |
|
|
|
4705 <h3 id='GeneralizationToSimplicialPresheaves'>Generalization to simplicial presheaves</h3> |
|
|
|
4706 |
|
|
|
4707 <p>Since the <a class='existingWikiWord' href='/nlab/show/simplicial+classifying+space'>universal simplicial principal complex</a>-construction is <a class='existingWikiWord' href='/nlab/show/functor'>functorial</a></p> |
|
|
|
4708 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_109' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SimplicialGroups</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>W</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>SimplicialSets</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
4709 SimplicialGroups |
|
|
|
4710 \xrightarrow{\;\; W \;\;} |
|
|
|
4711 SimplicialSets |
|
|
|
4712 |
|
|
|
4713 </annotation></semantics></math></div> |
|
|
|
4714 <p>with <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformations</a></p> |
|
|
|
4715 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_110' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>i</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>W</mi><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>p</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
4716 \mathcal{G} |
|
|
|
4717 \xrightarrow{\;\; i \;\;} |
|
|
|
4718 W\mathcal{G} |
|
|
|
4719 \xrightarrow{\;\; p \;\;} |
|
|
|
4720 \overline{W}\mathcal{G} |
|
|
|
4721 |
|
|
|
4722 </annotation></semantics></math></div> |
|
|
|
4723 <p>the pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functors</a> <a class='maruku-eqref' href='#eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'>(1)</a> extends to <a class='existingWikiWord' href='/nlab/show/presheaf'>presheaves</a>:</p> |
|
|
|
4724 |
|
|
|
4725 <p>\begin{prop} For <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_111' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/small+category'>small</a> <a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>sSet-category</a> with</p> |
|
|
|
4726 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_112' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>sSetCat</mi><mo stretchy='false'>(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mspace width='thinmathspace'></mspace><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4727 sPSh(\mathcal{C}) |
|
|
|
4728 \;\coloneqq\; |
|
|
|
4729 sSetCat( \mathcal{C}^{op}, \, sSet ) |
|
|
|
4730 |
|
|
|
4731 </annotation></semantics></math></div> |
|
|
|
4732 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>simplicial presheaves</a>, and for</p> |
|
|
|
4733 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_113' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><mi>Groups</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4734 \underline{\mathcal{G}} |
|
|
|
4735 \;\in\; |
|
|
|
4736 Groups |
|
|
|
4737 \big( |
|
|
|
4738 sPSh(\mathcal{C}) |
|
|
|
4739 \big) |
|
|
|
4740 |
|
|
|
4741 </annotation></semantics></math></div> |
|
|
|
4742 <p>a <a class='existingWikiWord' href='/nlab/show/group+object'>group object</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a> with</p> |
|
|
|
4743 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_114' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
4744 \underline{\mathcal{G}} |
|
|
|
4745 Acts |
|
|
|
4746 \big( |
|
|
|
4747 sPSh(\mathcal{C}) |
|
|
|
4748 \big) |
|
|
|
4749 |
|
|
|
4750 </annotation></semantics></math></div> |
|
|
|
4751 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/module+object'>action objects</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a></p> |
|
|
|
4752 |
|
|
|
4753 <p>we have an <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint pair</a></p> |
|
|
|
4754 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_115' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></mover></munderover><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
4755 \underline{\mathcal{G}} |
|
|
|
4756 Acts |
|
|
|
4757 \big( |
|
|
|
4758 sPSh(\mathcal{C}) |
|
|
|
4759 \big) |
|
|
|
4760 \underoverset |
|
|
|
4761 { |
|
|
|
4762 \underset{ |
|
|
|
4763 \big( |
|
|
|
4764 (-) \times W\underline{\mathcal{G}} |
|
|
|
4765 \big) |
|
|
|
4766 \big/ |
|
|
|
4767 \underline{\mathcal{G}} |
|
|
|
4768 } |
|
|
|
4769 {\longrightarrow}} |
|
|
|
4770 { |
|
|
|
4771 \overset{ |
|
|
|
4772 (-) |
|
|
|
4773 \times_{\overline{W}\underline{\mathcal{G}}} |
|
|
|
4774 W\underline{\mathcal{G}} |
|
|
|
4775 }{\longleftarrow} |
|
|
|
4776 } |
|
|
|
4777 {\bot} |
|
|
|
4778 sPSh(\mathcal{C})_{/\overline{W}\underline{\mathcal{G}}} |
|
|
|
4779 |
|
|
|
4780 </annotation></semantics></math></div> |
|
|
|
4781 <p>\end{prop} \begin{proof}</p> |
|
|
|
4782 |
|
|
|
4783 <p>The required <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> is the composite of the following sequence of <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijections</a>:</p> |
|
|
|
4784 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_116' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo stretchy='false'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mi>p</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mrow><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo stretchy='false'>}</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><msub><mi>Hom</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></msub><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>Y</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
4785 \begin{aligned} |
|
|
|
4786 Hom |
|
|
|
4787 \Big( |
|
|
|
4788 (\underline{X},p), |
|
|
|
4789 \, |
|
|
|
4790 \big( |
|
|
|
4791 \underline{Y} \times W\underline{\mathcal{G}} |
|
|
|
4792 \big) / \underline{\mathcal{G}} |
|
|
|
4793 \Big) |
|
|
|
4794 & |
|
|
|
4795 \;\simeq\; |
|
|
|
4796 Hom |
|
|
|
4797 \Big( |
|
|
|
4798 \underline{X}, |
|
|
|
4799 \, |
|
|
|
4800 \big( |
|
|
|
4801 \underline{Y} \times W\underline{\mathcal{G}} |
|
|
|
4802 \big) / \underline{\mathcal{G}} |
|
|
|
4803 \Big) |
|
|
|
4804 \underset{ |
|
|
|
4805 Hom |
|
|
|
4806 \Big( |
|
|
|
4807 \underline{X}, |
|
|
|
4808 \, |
|
|
|
4809 \overline{W} \underline{\mathcal{G}} |
|
|
|
4810 \Big) |
|
|
|
4811 }{\times} |
|
|
|
4812 \{p\} |
|
|
|
4813 \\ |
|
|
|
4814 & \;\simeq\; |
|
|
|
4815 \int^c |
|
|
|
4816 Hom |
|
|
|
4817 \Big( |
|
|
|
4818 \underline{X}(c), |
|
|
|
4819 \, |
|
|
|
4820 \big( |
|
|
|
4821 \underline{Y}(c) \times W\underline{\mathcal{G}(c)} |
|
|
|
4822 \big) / \underline{\mathcal{G}}(c) |
|
|
|
4823 \Big) |
|
|
|
4824 \underset{ |
|
|
|
4825 \int^c |
|
|
|
4826 Hom |
|
|
|
4827 \Big( |
|
|
|
4828 \underline{X}(c), |
|
|
|
4829 \, |
|
|
|
4830 \overline{W} \underline{\mathcal{G}}(c) |
|
|
|
4831 \Big) |
|
|
|
4832 }{\times} |
|
|
|
4833 \{p\} |
|
|
|
4834 \\ |
|
|
|
4835 & \;\simeq\; |
|
|
|
4836 \int^c |
|
|
|
4837 \left( |
|
|
|
4838 Hom |
|
|
|
4839 \Big( |
|
|
|
4840 \underline{X}(c), |
|
|
|
4841 \, |
|
|
|
4842 \big( |
|
|
|
4843 \underline{Y}(c) \times W\underline{\mathcal{G}}(c) |
|
|
|
4844 \big) / \underline{\mathcal{G}}(c) |
|
|
|
4845 \Big) |
|
|
|
4846 \underset{ |
|
|
|
4847 Hom |
|
|
|
4848 \Big( |
|
|
|
4849 \underline{X}(c), |
|
|
|
4850 \, |
|
|
|
4851 \overline{W} \underline{\mathcal{G}}(c) |
|
|
|
4852 \Big) |
|
|
|
4853 }{\times} |
|
|
|
4854 \{p(c)\} |
|
|
|
4855 \right) |
|
|
|
4856 \\ |
|
|
|
4857 & \;\simeq\; |
|
|
|
4858 \int^c |
|
|
|
4859 Hom_{/\overline{W}\underline{\mathcal{G}}(c)} |
|
|
|
4860 \Big( |
|
|
|
4861 \big( \underline{X}(c), p(c)\big), |
|
|
|
4862 \, |
|
|
|
4863 \big( |
|
|
|
4864 \underline{Y}(c) \times \overline{W} \underline{\mathcal{G}}(c) |
|
|
|
4865 \big)\big/ \mathcal{G}(c) |
|
|
|
4866 \Big) |
|
|
|
4867 \\ |
|
|
|
4868 & \;\simeq\; |
|
|
|
4869 \int^c |
|
|
|
4870 \left( |
|
|
|
4871 \underline{\mathcal{G}}(c) |
|
|
|
4872 Acts(sSet) |
|
|
|
4873 \big( |
|
|
|
4874 \underline{X}(c) |
|
|
|
4875 \underset{ \overline{W}\underline{\mathcal{G}}(c) }{\times} |
|
|
|
4876 W \underline{\mathcal{G}}(c), |
|
|
|
4877 \, |
|
|
|
4878 \underline{Y}(c) |
|
|
|
4879 \big) |
|
|
|
4880 \right) |
|
|
|
4881 \\ |
|
|
|
4882 & \;\simeq\; |
|
|
|
4883 \mathcal{G}Acts(sPSh(\mathcal{C})) |
|
|
|
4884 \big( |
|
|
|
4885 \underline{X} |
|
|
|
4886 \underset{\overline{W}\underline{\mathcal{G}}}{\times} |
|
|
|
4887 W \underline{\mathcal{G}}, |
|
|
|
4888 \, |
|
|
|
4889 \underline{Y} |
|
|
|
4890 \big) |
|
|
|
4891 \end{aligned} |
|
|
|
4892 |
|
|
|
4893 </annotation></semantics></math></div> |
|
|
|
4894 <p>Here:</p> |
|
|
|
4895 |
|
|
|
4896 <ul> |
|
|
|
4897 <li> |
|
|
|
4898 <p>the first step is the characterization of hom-sets of a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a> as a <a class='existingWikiWord' href='/nlab/show/fiber'>fiber</a> of the <a class='existingWikiWord' href='/nlab/show/hom-set'>hom-sets</a> of the underlying category;</p> |
|
|
|
4899 </li> |
|
|
|
4900 |
|
|
|
4901 <li> |
|
|
|
4902 <p>the second step is the description of the hom-set of a <a class='existingWikiWord' href='/nlab/show/functor+category'>functor category</a> as an <a class='existingWikiWord' href='/nlab/show/end'>end</a> of object-wise hom-sets;</p> |
|
|
|
4903 </li> |
|
|
|
4904 |
|
|
|
4905 <li> |
|
|
|
4906 <p>the third step uses that <a class='existingWikiWord' href='/nlab/show/end'>ends</a> are <a class='existingWikiWord' href='/nlab/show/limit'>limits</a> and <a class='existingWikiWord' href='/nlab/show/limits+commute+with+limits'>hence commute</a> the the <a class='existingWikiWord' href='/nlab/show/pullback'>fiber product</a>;</p> |
|
|
|
4907 </li> |
|
|
|
4908 |
|
|
|
4909 <li> |
|
|
|
4910 <p>the fourth step recognizes again, now object-wise, the hom-set in a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a>;</p> |
|
|
|
4911 </li> |
|
|
|
4912 |
|
|
|
4913 <li> |
|
|
|
4914 <p>the fifth step is objectwise the <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> of <a class='maruku-eqref' href='#eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace'>(1)</a>;</p> |
|
|
|
4915 </li> |
|
|
|
4916 |
|
|
|
4917 <li> |
|
|
|
4918 <p>the sixth step recognizes again the <a class='existingWikiWord' href='/nlab/show/end'>end</a> as computing the hom-set in (a subcategory of) a functor category:</p> |
|
|
|
4919 </li> |
|
|
|
4920 </ul> |
|
|
|
4921 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_117' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr> <mtr><mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd></mtr> <mtr><mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>A</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><munder><mi>B</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
4922 \array{ |
|
|
|
4923 \underline{\mathcal{G}}Acts |
|
|
|
4924 \big( |
|
|
|
4925 \underline{A}, \, \underline{B} |
|
|
|
4926 \big) |
|
|
|
4927 &\longrightarrow& |
|
|
|
4928 \mathcal{G}(c_1)Acts |
|
|
|
4929 \big( |
|
|
|
4930 \underline{A}(c_1), \, \underline{B}(c_1) |
|
|
|
4931 \big) |
|
|
|
4932 \\ |
|
|
|
4933 \big\downarrow |
|
|
|
4934 && |
|
|
|
4935 \big\downarrow |
|
|
|
4936 \\ |
|
|
|
4937 \mathcal{G}(c_2)Acts |
|
|
|
4938 \big( |
|
|
|
4939 \underline{A}(c_2), \, \underline{B}(c_2) |
|
|
|
4940 \big) |
|
|
|
4941 &\longrightarrow& |
|
|
|
4942 Hom |
|
|
|
4943 \big( |
|
|
|
4944 \underline{A}(c_1), \, \underline{B}(c_2) |
|
|
|
4945 \big) |
|
|
|
4946 } |
|
|
|
4947 |
|
|
|
4948 </annotation></semantics></math></div> |
|
|
|
4949 <p>\end{proof}</p> |
|
|
|
4950 |
|
|
|
4951 <h2 id='references'>References</h2> |
|
|
|
4952 |
|
|
|
4953 <p>The model structure, the characterization of its cofibrations, and its equivalence to the <a class='existingWikiWord' href='/nlab/show/model+structure+on+an+over+category'>slice model structure</a> of <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_118' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sSet</mi></mrow><annotation encoding='application/x-tex'>sSet</annotation></semantics></math> over <math class='maruku-mathml' display='inline' id='mathml_6bd24f22919d98884c376eeb359bc6befc3ec409_119' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mover><mi>W</mi><mo stretchy='false'>¯</mo></mover><mi>G</mi></mrow><annotation encoding='application/x-tex'>\bar W G</annotation></semantics></math> is due to</p> |
|
|
|
4954 |
|
|
|
4955 <ul> |
|
|
|
4956 <li id='DDK80'><a class='existingWikiWord' href='/nlab/show/Emmanuel+Dror+Farjoun'>Emmanuel Dror</a>, <a class='existingWikiWord' href='/nlab/show/William+Dwyer'>William Dwyer</a>, <a class='existingWikiWord' href='/nlab/show/Daniel+Kan'>Daniel Kan</a>, <em>Equivariant maps which are self homotopy equivalences</em>, Proc. Amer. Math. Soc. 80 (1980), no. 4, 670–672 (<a href='http://www.jstor.org/stable/2043448'>jstor:2043448</a>)</li> |
|
|
|
4957 </ul> |
|
|
|
4958 |
|
|
|
4959 <p>This Quillen equivalence also mentioned as:</p> |
|
|
|
4960 |
|
|
|
4961 <ul> |
|
|
|
4962 <li id='Dwyer2008'><a class='existingWikiWord' href='/nlab/show/William+Dwyer'>William Dwyer</a>, Exercise 4.2 in: <em>Homotopy theory of classifying spaces</em>, Lecture notes, Copenhagen 2008, (<a href='http://www.math.ku.dk/~jg/homotopical2008/Dwyer.CopenhagenNotes.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/Dwyer_HomotopyTheoryOfClassifyingSpaces.pdf' title='pdf'>pdf</a>)</li> |
|
|
|
4963 </ul> |
|
|
|
4964 |
|
|
|
4965 <p>Discussion in relation to the “fine” model structure of <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant homotopy theory</a> which appears in <a class='existingWikiWord' href='/nlab/show/Elmendorf%27s+theorem'>Elmendorf's theorem</a> is in</p> |
|
|
|
4966 |
|
|
|
4967 <ul> |
|
|
|
4968 <li id='Guillou'><a class='existingWikiWord' href='/nlab/show/Bert+Guillou'>Bert Guillou</a>, <em>A short note on models for equivariant homotopy theory</em>, 2006 (<a href='http://www.math.uiuc.edu/~bertg/EquivModels.pdf'>pdf</a>, <a class='existingWikiWord' href='/nlab/files/GuillouModelsForEquivariantHomotopyTheory.pdf' title='pdf'>pdf</a>)</li> |
|
|
|
4969 </ul> |
|
|
|
4970 |
|
|
|
4971 <p>Textbook account of (just) the Borel model structure:</p> |
|
|
|
4972 |
|
|
|
4973 <ul> |
|
|
|
4974 <li id='GoerssJardine09'><a class='existingWikiWord' href='/nlab/show/Paul+Goerss'>Paul Goerss</a>, <a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, Section V.2 of: <em><a class='existingWikiWord' href='/nlab/show/Simplicial+homotopy+theory'>Simplicial homotopy theory</a></em>, Progress in Mathematics, Birkhäuser (1999) Modern Birkhäuser Classics (2009) (<a href='https://link.springer.com/book/10.1007/978-3-0346-0189-4'>doi:10.1007/978-3-0346-0189-4</a>, <a href='http://web.archive.org/web/19990208220238/http://www.math.uwo.ca/~jardine/papers/simp-sets/'>webpage</a>)</li> |
|
|
|
4975 </ul> |
|
|
|
4976 |
|
|
|
4977 <p>Discussion with the model of <a class='existingWikiWord' href='/nlab/show/infinity-group'>∞-groups</a> by <a class='existingWikiWord' href='/nlab/show/simplicial+group'>simplicial groups</a> replaced by groupal <a class='existingWikiWord' href='/nlab/show/Segal+space'>Segal spaces</a> is in</p> |
|
|
|
4978 |
|
|
|
4979 <ul> |
|
|
|
4980 <li><a class='existingWikiWord' href='/nlab/show/Matan+Prasma'>Matan Prasma</a>, <em>Segal Group Actions</em> (<a href='http://arxiv.org/abs/1311.4749'>arXiv:1311.4749</a>)</li> |
|
|
|
4981 </ul> |
|
|
|
4982 |
|
|
|
4983 <p>Discussion of a <a class='existingWikiWord' href='/nlab/show/global+equivariant+homotopy+theory'>globalized</a> model structure for actions of all simplicial groups is in</p> |
|
|
|
4984 |
|
|
|
4985 <ul> |
|
|
|
4986 <li><a class='existingWikiWord' href='/nlab/show/Yonatan+Harpaz'>Yonatan Harpaz</a>, <a class='existingWikiWord' href='/nlab/show/Matan+Prasma'>Matan Prasma</a>, section 6.2 of <em>The Grothendieck construction for model categories</em> (<a href='http://arxiv.org/abs/1404.1852'>arXiv:1404.1852</a>)</li> |
|
|
|
4987 </ul> |
|
|
|
4988 |
|
|
|
4989 <p> |
|
|
|
4990 </p> </div> |
|
|
|
4991 </content> |
|
|
|
4992 </entry> |
|
|
|
4993 <entry> |
|
|
|
4994 <title type="html">Sandbox</title> |
|
|
|
4995 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Sandbox"/> |
|
|
|
4996 <updated>2021-07-01T16:14:56Z</updated> |
|
|
|
4997 <published>2009-07-07T06:11:26Z</published> |
|
|
|
4998 <id>tag:ncatlab.org,2009-07-07:nLab,Sandbox</id> |
|
|
|
4999 <author> |
|
|
|
5000 <name>Urs Schreiber</name> |
|
|
|
5001 </author> |
|
|
|
5002 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Sandbox"> |
|
|
|
5003 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
5004 <h3 id='GeneralizationToSimplicialPresheaves'>Generalization to simplicial presheaves</h3> |
|
|
|
5005 |
|
|
|
5006 <p>Since the <a class='existingWikiWord' href='/nlab/show/simplicial+classifying+space'>universal simplicial principal complex</a>-construction is <a class='existingWikiWord' href='/nlab/show/functor'>functorial</a></p> |
|
|
|
5007 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SimplicialGroups</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>W</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>SimplicialSets</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
5008 SimplicialGroups |
|
|
|
5009 \xrightarrow{\;\; W \;\;} |
|
|
|
5010 SimplicialSets |
|
|
|
5011 |
|
|
|
5012 </annotation></semantics></math></div> |
|
|
|
5013 <p>with <a class='existingWikiWord' href='/nlab/show/natural+transformation'>natural transformations</a></p> |
|
|
|
5014 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>i</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mi>W</mi><mi>𝒢</mi><mover><mo>→</mo><mrow><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace><mi>p</mi><mspace width='thickmathspace'></mspace><mspace width='thickmathspace'></mspace></mrow></mover><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow><annotation encoding='application/x-tex'> |
|
|
|
5015 \mathcal{G} |
|
|
|
5016 \xrightarrow{\;\; i \;\;} |
|
|
|
5017 W\mathcal{G} |
|
|
|
5018 \xrightarrow{\;\; p \;\;} |
|
|
|
5019 \overline{W}\mathcal{G} |
|
|
|
5020 |
|
|
|
5021 </annotation></semantics></math></div> |
|
|
|
5022 <p>the pair of <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint functors</a> (eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace) extends to <a class='existingWikiWord' href='/nlab/show/presheaf'>presheaves</a>:</p> |
|
|
|
5023 |
|
|
|
5024 <p>\begin{prop} For <math class='maruku-mathml' display='inline' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding='application/x-tex'>\mathcal{C}</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/small+category'>small</a> <a class='existingWikiWord' href='/nlab/show/simplicially+enriched+category'>sSet-category</a> with</p> |
|
|
|
5025 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mspace width='thickmathspace'></mspace><mo>≔</mo><mspace width='thickmathspace'></mspace><mi>sSetCat</mi><mo stretchy='false'>(</mo><msup><mi>𝒞</mi> <mi>op</mi></msup><mo>,</mo><mspace width='thinmathspace'></mspace><mi>sSet</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5026 sPSh(\mathcal{C}) |
|
|
|
5027 \;\coloneqq\; |
|
|
|
5028 sSetCat( \mathcal{C}^{op}, \, sSet ) |
|
|
|
5029 |
|
|
|
5030 </annotation></semantics></math></div> |
|
|
|
5031 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>simplicial presheaves</a>, and for</p> |
|
|
|
5032 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mspace width='thickmathspace'></mspace><mo>∈</mo><mspace width='thickmathspace'></mspace><mi>Groups</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5033 \underline{\mathcal{G}} |
|
|
|
5034 \;\in\; |
|
|
|
5035 Groups |
|
|
|
5036 \big( |
|
|
|
5037 sPSh(\mathcal{C}) |
|
|
|
5038 \big) |
|
|
|
5039 |
|
|
|
5040 </annotation></semantics></math></div> |
|
|
|
5041 <p>a <a class='existingWikiWord' href='/nlab/show/group+object'>group object</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a> with</p> |
|
|
|
5042 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5043 \underline{\mathcal{G}} |
|
|
|
5044 Acts |
|
|
|
5045 \big( |
|
|
|
5046 sPSh(\mathcal{C}) |
|
|
|
5047 \big) |
|
|
|
5048 |
|
|
|
5049 </annotation></semantics></math></div> |
|
|
|
5050 <p>denoting its category of <a class='existingWikiWord' href='/nlab/show/module+object'>action objects</a> <a class='existingWikiWord' href='/nlab/show/internalization'>internal to</a> <a class='existingWikiWord' href='/nlab/show/simplicial+presheaf'>SimplicialPresheaves</a></p> |
|
|
|
5051 |
|
|
|
5052 <p>we have an <a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjoint pair</a></p> |
|
|
|
5053 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></mover></munderover><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
5054 \underline{\mathcal{G}} |
|
|
|
5055 Acts |
|
|
|
5056 \big( |
|
|
|
5057 sPSh(\mathcal{C}) |
|
|
|
5058 \big) |
|
|
|
5059 \underoverset |
|
|
|
5060 { |
|
|
|
5061 \underset{ |
|
|
|
5062 \big( |
|
|
|
5063 (-) \times W\underline{\mathcal{G}} |
|
|
|
5064 \big) |
|
|
|
5065 \big/ |
|
|
|
5066 \underline{\mathcal{G}} |
|
|
|
5067 } |
|
|
|
5068 {\longrightarrow}} |
|
|
|
5069 { |
|
|
|
5070 \overset{ |
|
|
|
5071 (-) |
|
|
|
5072 \times_{\overline{W}\underline{\mathcal{G}}} |
|
|
|
5073 W\underline{\mathcal{G}} |
|
|
|
5074 }{\longleftarrow} |
|
|
|
5075 } |
|
|
|
5076 {\bot} |
|
|
|
5077 sPSh(\mathcal{C})_{/\overline{W}\underline{\mathcal{G}}} |
|
|
|
5078 |
|
|
|
5079 </annotation></semantics></math></div> |
|
|
|
5080 <p>\end{prop} \begin{proof}</p> |
|
|
|
5081 |
|
|
|
5082 <p>The required <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> is the composite of the following sequence of <a class='existingWikiWord' href='/nlab/show/natural+bijection'>natural bijections</a>:</p> |
|
|
|
5083 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo stretchy='false'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mi>p</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mrow><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><msup><mo>∫</mo> <mi>c</mi></msup><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>}</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><munder><mi>Y</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mrow><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo><munder><mo>×</mo><mrow><mi>Hom</mi><mo maxsize='1.8em' minsize='1.8em'>(</mo><munder><mi>X</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mrow></munder><mo stretchy='false'>{</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo stretchy='false'>}</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><msub><mi>Hom</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></msub><mo maxsize='1.8em' minsize='1.8em'>(</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mi>p</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>Y</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>×</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><mi>𝒢</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.8em' minsize='1.8em'>)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><msup><mo>∫</mo> <mi>c</mi></msup><mrow><mo>(</mo><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>Y</mi><mo stretchy='false'>(</mo><mi>c</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mspace width='thickmathspace'></mspace><mo>≃</mo><mspace width='thickmathspace'></mspace><mi>𝒢</mi><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>X</mi><munder><mo>×</mo><mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo>,</mo><mspace width='thinmathspace'></mspace><mi>Y</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
5084 \begin{aligned} |
|
|
|
5085 Hom |
|
|
|
5086 \Big( |
|
|
|
5087 (\underline{X},p), |
|
|
|
5088 \, |
|
|
|
5089 \big( |
|
|
|
5090 \underline{Y} \times W\underline{\mathcal{G}} |
|
|
|
5091 \big) / \underline{\mathcal{G}} |
|
|
|
5092 \Big) |
|
|
|
5093 & |
|
|
|
5094 \;\simeq\; |
|
|
|
5095 Hom |
|
|
|
5096 \Big( |
|
|
|
5097 \underline{X}, |
|
|
|
5098 \, |
|
|
|
5099 \big( |
|
|
|
5100 \underline{Y} \times W\underline{\mathcal{G}} |
|
|
|
5101 \big) / \underline{\mathcal{G}} |
|
|
|
5102 \Big) |
|
|
|
5103 \underset{ |
|
|
|
5104 Hom |
|
|
|
5105 \Big( |
|
|
|
5106 \underline{X}, |
|
|
|
5107 \, |
|
|
|
5108 \overline{W} \underline{\mathcal{G}} |
|
|
|
5109 \Big) |
|
|
|
5110 }{\times} |
|
|
|
5111 \{p\} |
|
|
|
5112 \\ |
|
|
|
5113 & \;\simeq\; |
|
|
|
5114 \int^c |
|
|
|
5115 Hom |
|
|
|
5116 \Big( |
|
|
|
5117 \underline{X}(c), |
|
|
|
5118 \, |
|
|
|
5119 \big( |
|
|
|
5120 \underline{Y}(c) \times W\underline{\mathcal{G}(c)} |
|
|
|
5121 \big) / \underline{\mathcal{G}}(c) |
|
|
|
5122 \Big) |
|
|
|
5123 \underset{ |
|
|
|
5124 \int^c |
|
|
|
5125 Hom |
|
|
|
5126 \Big( |
|
|
|
5127 \underline{X}(c), |
|
|
|
5128 \, |
|
|
|
5129 \overline{W} \underline{\mathcal{G}}(c) |
|
|
|
5130 \Big) |
|
|
|
5131 }{\times} |
|
|
|
5132 \{p\} |
|
|
|
5133 \\ |
|
|
|
5134 & \;\simeq\; |
|
|
|
5135 \int^c |
|
|
|
5136 \left( |
|
|
|
5137 Hom |
|
|
|
5138 \Big( |
|
|
|
5139 \underline{X}(c), |
|
|
|
5140 \, |
|
|
|
5141 \big( |
|
|
|
5142 \underline{Y}(c) \times W\underline{\mathcal{G}(c)} |
|
|
|
5143 \big) / \underline{\mathcal{G}}(c) |
|
|
|
5144 \Big) |
|
|
|
5145 \underset{ |
|
|
|
5146 Hom |
|
|
|
5147 \Big( |
|
|
|
5148 \underline{X}(c), |
|
|
|
5149 \, |
|
|
|
5150 \overline{W} \underline{\mathcal{G}}(c) |
|
|
|
5151 \Big) |
|
|
|
5152 }{\times} |
|
|
|
5153 \{p(c)\} |
|
|
|
5154 \right) |
|
|
|
5155 \\ |
|
|
|
5156 & \;\simeq\; |
|
|
|
5157 \int^c |
|
|
|
5158 Hom_{/\overline{W}\underline{\mathcal{G}}(c)} |
|
|
|
5159 \Big( |
|
|
|
5160 \big(X(c), p(c)\big), |
|
|
|
5161 \, |
|
|
|
5162 \big( |
|
|
|
5163 Y(c) \times \overline{W} \mathcal{G}(c) |
|
|
|
5164 \big)\big/ \mathcal{G}(c) |
|
|
|
5165 \Big) |
|
|
|
5166 \\ |
|
|
|
5167 & \;\simeq\; |
|
|
|
5168 \int^c |
|
|
|
5169 \left( |
|
|
|
5170 \underline{\mathcal{G}}(c) |
|
|
|
5171 Acts(sSet) |
|
|
|
5172 \big( |
|
|
|
5173 X(c) |
|
|
|
5174 \underset{ \overline{W}\underline{\mathcal{G}}(c) }{\times} |
|
|
|
5175 W \underline{\mathcal{G}}(c), |
|
|
|
5176 \, |
|
|
|
5177 Y(c) |
|
|
|
5178 \big) |
|
|
|
5179 \right) |
|
|
|
5180 \\ |
|
|
|
5181 & \;\simeq\; |
|
|
|
5182 \mathcal{G}Acts(sPSh(\mathcal{C})) |
|
|
|
5183 \big( |
|
|
|
5184 X |
|
|
|
5185 \underset{\overline{W}\underline{\mathcal{G}}}{\times} |
|
|
|
5186 W \underline{\mathcal{G}}, |
|
|
|
5187 \, |
|
|
|
5188 Y |
|
|
|
5189 \big) |
|
|
|
5190 \end{aligned} |
|
|
|
5191 |
|
|
|
5192 </annotation></semantics></math></div> |
|
|
|
5193 <p>Here:</p> |
|
|
|
5194 |
|
|
|
5195 <ul> |
|
|
|
5196 <li> |
|
|
|
5197 <p>the first step is the characterization of hom-sets of a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a> as a <a class='existingWikiWord' href='/nlab/show/fiber'>fiber</a> of the <a class='existingWikiWord' href='/nlab/show/hom-set'>hom-sets</a> of the underlying category;</p> |
|
|
|
5198 </li> |
|
|
|
5199 |
|
|
|
5200 <li> |
|
|
|
5201 <p>the second step is the description of the hom-set of a <a class='existingWikiWord' href='/nlab/show/functor+category'>functor category</a> as an <a class='existingWikiWord' href='/nlab/show/end'>end</a> of object-wise hom-sets;</p> |
|
|
|
5202 </li> |
|
|
|
5203 |
|
|
|
5204 <li> |
|
|
|
5205 <p>the third step uses that <a class='existingWikiWord' href='/nlab/show/end'>ends</a> are <a class='existingWikiWord' href='/nlab/show/limit'>limits</a> and <a class='existingWikiWord' href='/nlab/show/limits+commute+with+limits'>hence commute</a> the the <a class='existingWikiWord' href='/nlab/show/pullback'>fiber product</a>;</p> |
|
|
|
5206 </li> |
|
|
|
5207 |
|
|
|
5208 <li> |
|
|
|
5209 <p>the fourth step recognizes again, now object-wise, the hom-set in a <a class='existingWikiWord' href='/nlab/show/over+category'>slice category</a>;</p> |
|
|
|
5210 </li> |
|
|
|
5211 |
|
|
|
5212 <li> |
|
|
|
5213 <p>the fifth step is objectwise the <a href='adjoint+functor#InTermsOfHomIsomorphism'>hom-isomorphism</a> of (eq:QuillenAdjunctionWithSliceOverSimplicialClassifyingSpace);</p> |
|
|
|
5214 </li> |
|
|
|
5215 |
|
|
|
5216 <li> |
|
|
|
5217 <p>the sixth step recognizes again the <a class='existingWikiWord' href='/nlab/show/end'>end</a> as computing the hom-set in (a subcategory of) a functor category:</p> |
|
|
|
5218 </li> |
|
|
|
5219 </ul> |
|
|
|
5220 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr> <mtr><mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd> <mtd></mtd> <mtd><mo maxsize='1.2em' minsize='1.2em'>↓</mo></mtd></mtr> <mtr><mtd><mi>𝒢</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd> <mtd><mo>⟶</mo></mtd> <mtd><mi>Hom</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>1</mn></msub><mo stretchy='false'>)</mo><mo>,</mo><mspace width='thinmathspace'></mspace><mi>B</mi><mo stretchy='false'>(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> |
|
|
|
5221 \array{ |
|
|
|
5222 \underline{\mathcal{G}}Acts |
|
|
|
5223 \big( |
|
|
|
5224 A, \, B |
|
|
|
5225 \big) |
|
|
|
5226 &\longrightarrow& |
|
|
|
5227 \mathcal{G}(c_1)Acts |
|
|
|
5228 \big( |
|
|
|
5229 A(c_1), \, B(c_1) |
|
|
|
5230 \big) |
|
|
|
5231 \\ |
|
|
|
5232 \big\downarrow |
|
|
|
5233 && |
|
|
|
5234 \big\downarrow |
|
|
|
5235 \\ |
|
|
|
5236 \mathcal{G}(c_2)Acts |
|
|
|
5237 \big( |
|
|
|
5238 A(c_2), \, B(c_2) |
|
|
|
5239 \big) |
|
|
|
5240 &\longrightarrow& |
|
|
|
5241 Hom |
|
|
|
5242 \big( |
|
|
|
5243 A(c_1), \, B(c_2) |
|
|
|
5244 \big) |
|
|
|
5245 } |
|
|
|
5246 |
|
|
|
5247 </annotation></semantics></math></div> |
|
|
|
5248 <p>\end{proof}</p> |
|
|
|
5249 |
|
|
|
5250 <p>\linebreak</p> |
|
|
|
5251 |
|
|
|
5252 <p>\linebreak</p> |
|
|
|
5253 |
|
|
|
5254 <p>added the observation (<a href='https://ncatlab.org/nlab/show/Borel+model+structure#GeneralizationToSimplicialPresheaves'>here</a>) that the adjunction for simplicial groups</p> |
|
|
|
5255 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>𝒢</mi><mi>Acts</mi><mo stretchy='false'>(</mo><mi>sSet</mi><mo stretchy='false'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><mi>𝒢</mi><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo stretchy='false'>/</mo><mi>𝒢</mi></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow></msub><mi>W</mi><mi>𝒢</mi></mrow></mover></munderover><msub><mi>sSet</mi> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><mi>𝒢</mi></mrow></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
5256 \mathcal{G} Acts(sSet) |
|
|
|
5257 \underoverset |
|
|
|
5258 {\underset{ \big((-) \times W \mathcal{G}\big)/\mathcal{G} }{\longrightarrow}} |
|
|
|
5259 {\overset{ (-) \times_{\overline{W}\mathcal{G}} W \mathcal{G} }{\longleftarrow}} |
|
|
|
5260 {\bot} |
|
|
|
5261 sSet_{/\overline{W}\mathcal{G}} |
|
|
|
5262 |
|
|
|
5263 </annotation></semantics></math></div> |
|
|
|
5264 <p>generalizes to one for presheaves of simplicial groups</p> |
|
|
|
5265 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_fbe839e76a492d60225f2c47ba18f21550b3417b_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><munder><mi>𝒢</mi><mo>̲</mo></munder><mi>Acts</mi><mo maxsize='1.2em' minsize='1.2em'>(</mo><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><mo stretchy='false'>)</mo><mo maxsize='1.2em' minsize='1.2em'>)</mo><munderover><mo>⊥</mo><munder><mo>⟶</mo><mrow><mo maxsize='1.2em' minsize='1.2em'>(</mo><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>×</mo><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder><mo maxsize='1.2em' minsize='1.2em'>)</mo><mo maxsize='1.2em' minsize='1.2em'>/</mo><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></munder><mover><mo>⟵</mo><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub><mi>W</mi><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></mover></munderover><mi>sPSh</mi><mo stretchy='false'>(</mo><mi>𝒞</mi><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>/</mo><mover><mi>W</mi><mo>¯</mo></mover><munder><mi>𝒢</mi><mo>̲</mo></munder></mrow></msub></mrow><annotation encoding='application/x-tex'> |
|
|
|
5266 \underline{\mathcal{G}} |
|
|
|
5267 Acts |
|
|
|
5268 \big( |
|
|
|
5269 sPSh(\mathcal{C}) |
|
|
|
5270 \big) |
|
|
|
5271 \underoverset |
|
|
|
5272 { |
|
|
|
5273 \underset{ |
|
|
|
5274 \big( |
|
|
|
5275 (-) \times W\underline{\mathcal{G}} |
|
|
|
5276 \big) |
|
|
|
5277 \big/ |
|
|
|
5278 \underline{\mathcal{G}} |
|
|
|
5279 } |
|
|
|
5280 {\longrightarrow}} |
|
|
|
5281 { |
|
|
|
5282 \overset{ |
|
|
|
5283 (-) |
|
|
|
5284 \times_{\overline{W}\underline{\mathcal{G}}} |
|
|
|
5285 W\underline{\mathcal{G}} |
|
|
|
5286 }{\longleftarrow} |
|
|
|
5287 } |
|
|
|
5288 {\bot} |
|
|
|
5289 sPSh(\mathcal{C})_{/\overline{W}\underline{\mathcal{G}}} |
|
|
|
5290 |
|
|
|
5291 </annotation></semantics></math></div> </div> |
|
|
|
5292 </content> |
|
|
|
5293 </entry> |
|
|
|
5294 <entry> |
|
|
|
5295 <title type="html">simplicial presheaf</title> |
|
|
|
5296 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/simplicial+presheaf"/> |
|
|
|
5297 <updated>2021-07-01T14:31:25Z</updated> |
|
|
|
5298 <published>2009-01-29T18:34:04Z</published> |
|
|
|
5299 <id>tag:ncatlab.org,2009-01-29:nLab,simplicial+presheaf</id> |
|
|
|
5300 <author> |
|
|
|
5301 <name>Urs Schreiber</name> |
|
|
|
5302 </author> |
|
|
|
5303 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/simplicial+presheaf"> |
|
|
|
5304 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
5305 <div class='rightHandSide'> |
|
|
|
5306 <div class='toc clickDown' tabindex='0'> |
|
|
|
5307 <h3 id='context'>Context</h3> |
|
|
|
5308 |
|
|
|
5309 <h4 id='homotopy_theory'>Homotopy theory</h4> |
|
|
|
5310 |
|
|
|
5311 <div class='hide'> |
|
|
|
5312 <p><strong><a class='existingWikiWord' href='/nlab/show/homotopy+theory'>homotopy theory</a>, <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+theory'>(∞,1)-category theory</a>, <a class='existingWikiWord' href='/nlab/show/homotopy+type+theory'>homotopy type theory</a></strong></p> |
|
|
|
5313 |
|
|
|
5314 <p>flavors: <a class='existingWikiWord' href='/nlab/show/stable+homotopy+theory'>stable</a>, <a class='existingWikiWord' href='/nlab/show/equivariant+homotopy+theory'>equivariant</a>, <a class='existingWikiWord' href='/nlab/show/rational+homotopy+theory'>rational</a>, <a class='existingWikiWord' href='/nlab/show/p-adic+homotopy+theory'>p-adic</a>, <a class='existingWikiWord' href='/nlab/show/proper+homotopy+theory'>proper</a>, <a class='existingWikiWord' href='/nlab/show/geometric+homotopy+type+theory'>geometric</a>, <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive</a>, <a class='existingWikiWord' href='/nlab/show/directed+homotopy+theory'>directed</a>…</p> |
|
|
|
5315 |
|
|
|
5316 <p>models: <a class='existingWikiWord' href='/nlab/show/topological+homotopy+theory'>topological</a>, <a class='existingWikiWord' href='/nlab/show/simplicial+homotopy+theory'>simplicial</a>, <a class='existingWikiWord' href='/nlab/show/localic+homotopy+theory'>localic</a>, …</p> |
|
|
|
5317 |
|
|
|
5318 <p>see also <strong><a class='existingWikiWord' href='/nlab/show/algebraic+topology'>algebraic topology</a></strong></p> |
|
|
|
5319 |
|
|
|
5320 <p><strong>Introductions</strong></p> |
|
|
|
5321 |
|
|
|
5322 <ul> |
|
|
|
5323 <li> |
|
|
|
5324 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Topology+--+2'>Introduction to Basic Homotopy Theory</a></p> |
|
|
|
5325 </li> |
|
|
|
5326 |
|
|
|
5327 <li> |
|
|
|
5328 <p><a class='existingWikiWord' href='/nlab/show/Introduction+to+Homotopy+Theory'>Introduction to Abstract Homotopy Theory</a></p> |
|
|
|
5329 </li> |
|
|
|
5330 |
|
|
|
5331 <li> |
|
|
|
5332 <p><a class='existingWikiWord' href='/nlab/show/geometry+of+physics+--+homotopy+types'>geometry of physics -- homotopy types</a></p> |
|
|
|
5333 </li> |
|
|
|
5334 </ul> |
|
|
|
5335 |
|
|
|
5336 <p><strong>Definitions</strong></p> |
|
|
|
5337 |
|
|
|
5338 <ul> |
|
|
|
5339 <li> |
|
|
|
5340 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>homotopy</a>, <a class='existingWikiWord' href='/nlab/show/higher+homotopy'>higher homotopy</a></p> |
|
|
|
5341 </li> |
|
|
|
5342 |
|
|
|
5343 <li> |
|
|
|
5344 <p><a class='existingWikiWord' href='/nlab/show/homotopy+type'>homotopy type</a></p> |
|
|
|
5345 </li> |
|
|
|
5346 |
|
|
|
5347 <li> |
|
|
|
5348 <p><a class='existingWikiWord' href='/nlab/show/Pi-algebra'>Pi-algebra</a>, <a class='existingWikiWord' href='/nlab/show/spherical+object'>spherical object and Pi(A)-algebra</a></p> |
|
|
|
5349 </li> |
|
|
|
5350 |
|
|
|
5351 <li> |
|
|
|
5352 <p><a class='existingWikiWord' href='/nlab/show/homotopy+coherent+category+theory'>homotopy coherent category theory</a></p> |
|
|
|
5353 |
|
|
|
5354 <ul> |
|
|
|
5355 <li> |
|
|
|
5356 <p><a class='existingWikiWord' href='/nlab/show/homotopical+category'>homotopical category</a></p> |
|
|
|
5357 |
|
|
|
5358 <ul> |
|
|
|
5359 <li> |
|
|
|
5360 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p> |
|
|
|
5361 </li> |
|
|
|
5362 |
|
|
|
5363 <li> |
|
|
|
5364 <p><a class='existingWikiWord' href='/nlab/show/category+of+fibrant+objects'>category of fibrant objects</a>, <a class='existingWikiWord' href='/nlab/show/cofibration+category'>cofibration category</a></p> |
|
|
|
5365 </li> |
|
|
|
5366 |
|
|
|
5367 <li> |
|
|
|
5368 <p><a class='existingWikiWord' href='/nlab/show/Waldhausen+category'>Waldhausen category</a></p> |
|
|
|
5369 </li> |
|
|
|
5370 </ul> |
|
|
|
5371 </li> |
|
|
|
5372 |
|
|
|
5373 <li> |
|
|
|
5374 <p><a class='existingWikiWord' href='/nlab/show/homotopy+category'>homotopy category</a></p> |
|
|
|
5375 |
|
|
|
5376 <ul> |
|
|
|
5377 <li><a class='existingWikiWord' href='/nlab/show/Ho%28Top%29'>Ho(Top)</a></li> |
|
|
|
5378 </ul> |
|
|
|
5379 </li> |
|
|
|
5380 </ul> |
|
|
|
5381 </li> |
|
|
|
5382 |
|
|
|
5383 <li> |
|
|
|
5384 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> |
|
|
|
5385 |
|
|
|
5386 <ul> |
|
|
|
5387 <li><a class='existingWikiWord' href='/nlab/show/homotopy+category+of+an+%28infinity%2C1%29-category'>homotopy category of an (∞,1)-category</a></li> |
|
|
|
5388 </ul> |
|
|
|
5389 </li> |
|
|
|
5390 </ul> |
|
|
|
5391 |
|
|
|
5392 <p><strong>Paths and cylinders</strong></p> |
|
|
|
5393 |
|
|
|
5394 <ul> |
|
|
|
5395 <li> |
|
|
|
5396 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>left homotopy</a></p> |
|
|
|
5397 |
|
|
|
5398 <ul> |
|
|
|
5399 <li> |
|
|
|
5400 <p><a class='existingWikiWord' href='/nlab/show/cylinder+object'>cylinder object</a></p> |
|
|
|
5401 </li> |
|
|
|
5402 |
|
|
|
5403 <li> |
|
|
|
5404 <p><a class='existingWikiWord' href='/nlab/show/mapping+cone'>mapping cone</a></p> |
|
|
|
5405 </li> |
|
|
|
5406 </ul> |
|
|
|
5407 </li> |
|
|
|
5408 |
|
|
|
5409 <li> |
|
|
|
5410 <p><a class='existingWikiWord' href='/nlab/show/homotopy'>right homotopy</a></p> |
|
|
|
5411 |
|
|
|
5412 <ul> |
|
|
|
5413 <li> |
|
|
|
5414 <p><a class='existingWikiWord' href='/nlab/show/path+space+object'>path object</a></p> |
|
|
|
5415 </li> |
|
|
|
5416 |
|
|
|
5417 <li> |
|
|
|
5418 <p><a class='existingWikiWord' href='/nlab/show/mapping+cocone'>mapping cocone</a></p> |
|
|
|
5419 </li> |
|
|
|
5420 |
|
|
|
5421 <li> |
|
|
|
5422 <p><a class='existingWikiWord' href='/nlab/show/generalized+universal+bundle'>universal bundle</a></p> |
|
|
|
5423 </li> |
|
|
|
5424 </ul> |
|
|
|
5425 </li> |
|
|
|
5426 |
|
|
|
5427 <li> |
|
|
|
5428 <p><a class='existingWikiWord' href='/nlab/show/interval+object'>interval object</a></p> |
|
|
|
5429 |
|
|
|
5430 <ul> |
|
|
|
5431 <li> |
|
|
|
5432 <p><a class='existingWikiWord' href='/nlab/show/localization+at+geometric+homotopies'>homotopy localization</a></p> |
|
|
|
5433 </li> |
|
|
|
5434 |
|
|
|
5435 <li> |
|
|
|
5436 <p><a class='existingWikiWord' href='/nlab/show/infinitesimal+interval+object'>infinitesimal interval object</a></p> |
|
|
|
5437 </li> |
|
|
|
5438 </ul> |
|
|
|
5439 </li> |
|
|
|
5440 </ul> |
|
|
|
5441 |
|
|
|
5442 <p><strong>Homotopy groups</strong></p> |
|
|
|
5443 |
|
|
|
5444 <ul> |
|
|
|
5445 <li> |
|
|
|
5446 <p><a class='existingWikiWord' href='/nlab/show/homotopy+group'>homotopy group</a></p> |
|
|
|
5447 |
|
|
|
5448 <ul> |
|
|
|
5449 <li> |
|
|
|
5450 <p><a class='existingWikiWord' href='/nlab/show/fundamental+group'>fundamental group</a></p> |
|
|
|
5451 |
|
|
|
5452 <ul> |
|
|
|
5453 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+a+topos'>fundamental group of a topos</a></li> |
|
|
|
5454 </ul> |
|
|
|
5455 </li> |
|
|
|
5456 |
|
|
|
5457 <li> |
|
|
|
5458 <p><a class='existingWikiWord' href='/nlab/show/Brown-Grossman+homotopy+group'>Brown-Grossman homotopy group</a></p> |
|
|
|
5459 </li> |
|
|
|
5460 |
|
|
|
5461 <li> |
|
|
|
5462 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical homotopy groups in an (∞,1)-topos</a></p> |
|
|
|
5463 </li> |
|
|
|
5464 |
|
|
|
5465 <li> |
|
|
|
5466 <p><a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric homotopy groups in an (∞,1)-topos</a></p> |
|
|
|
5467 </li> |
|
|
|
5468 </ul> |
|
|
|
5469 </li> |
|
|
|
5470 |
|
|
|
5471 <li> |
|
|
|
5472 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid'>fundamental ∞-groupoid</a></p> |
|
|
|
5473 |
|
|
|
5474 <ul> |
|
|
|
5475 <li> |
|
|
|
5476 <p><a class='existingWikiWord' href='/nlab/show/fundamental+groupoid'>fundamental groupoid</a></p> |
|
|
|
5477 |
|
|
|
5478 <ul> |
|
|
|
5479 <li><a class='existingWikiWord' href='/nlab/show/path+groupoid'>path groupoid</a></li> |
|
|
|
5480 </ul> |
|
|
|
5481 </li> |
|
|
|
5482 |
|
|
|
5483 <li> |
|
|
|
5484 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
5485 </li> |
|
|
|
5486 |
|
|
|
5487 <li> |
|
|
|
5488 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
5489 </li> |
|
|
|
5490 </ul> |
|
|
|
5491 </li> |
|
|
|
5492 |
|
|
|
5493 <li> |
|
|
|
5494 <p><a class='existingWikiWord' href='/nlab/show/fundamental+%28infinity%2C1%29-category'>fundamental (∞,1)-category</a></p> |
|
|
|
5495 |
|
|
|
5496 <ul> |
|
|
|
5497 <li><a class='existingWikiWord' href='/nlab/show/fundamental+category'>fundamental category</a></li> |
|
|
|
5498 </ul> |
|
|
|
5499 </li> |
|
|
|
5500 </ul> |
|
|
|
5501 |
|
|
|
5502 <p><strong>Basic facts</strong></p> |
|
|
|
5503 |
|
|
|
5504 <ul> |
|
|
|
5505 <li><a class='existingWikiWord' href='/nlab/show/fundamental+group+of+the+circle+is+the+integers'>fundamental group of the circle is the integers</a></li> |
|
|
|
5506 </ul> |
|
|
|
5507 |
|
|
|
5508 <p><strong>Theorems</strong></p> |
|
|
|
5509 |
|
|
|
5510 <ul> |
|
|
|
5511 <li> |
|
|
|
5512 <p><a class='existingWikiWord' href='/nlab/show/fundamental+theorem+of+covering+spaces'>fundamental theorem of covering spaces</a></p> |
|
|
|
5513 </li> |
|
|
|
5514 |
|
|
|
5515 <li> |
|
|
|
5516 <p><a class='existingWikiWord' href='/nlab/show/Freudenthal+suspension+theorem'>Freudenthal suspension theorem</a></p> |
|
|
|
5517 </li> |
|
|
|
5518 |
|
|
|
5519 <li> |
|
|
|
5520 <p><a class='existingWikiWord' href='/nlab/show/Blakers-Massey+theorem'>Blakers-Massey theorem</a></p> |
|
|
|
5521 </li> |
|
|
|
5522 |
|
|
|
5523 <li> |
|
|
|
5524 <p><a class='existingWikiWord' href='/nlab/show/higher+homotopy+van+Kampen+theorem'>higher homotopy van Kampen theorem</a></p> |
|
|
|
5525 </li> |
|
|
|
5526 |
|
|
|
5527 <li> |
|
|
|
5528 <p><a class='existingWikiWord' href='/nlab/show/nerve+theorem'>nerve theorem</a></p> |
|
|
|
5529 </li> |
|
|
|
5530 |
|
|
|
5531 <li> |
|
|
|
5532 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead's theorem</a></p> |
|
|
|
5533 </li> |
|
|
|
5534 |
|
|
|
5535 <li> |
|
|
|
5536 <p><a class='existingWikiWord' href='/nlab/show/Hurewicz+theorem'>Hurewicz theorem</a></p> |
|
|
|
5537 </li> |
|
|
|
5538 |
|
|
|
5539 <li> |
|
|
|
5540 <p><a class='existingWikiWord' href='/nlab/show/Galois+theory'>Galois theory</a></p> |
|
|
|
5541 </li> |
|
|
|
5542 |
|
|
|
5543 <li> |
|
|
|
5544 <p><a class='existingWikiWord' href='/nlab/show/homotopy+hypothesis'>homotopy hypothesis</a>-theorem</p> |
|
|
|
5545 </li> |
|
|
|
5546 </ul> |
|
|
|
5547 </div> |
|
|
|
5548 |
|
|
|
5549 <h4 id='topos_theory'><math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(\infty,1)</annotation></semantics></math>-Topos Theory</h4> |
|
|
|
5550 |
|
|
|
5551 <div class='hide'> |
|
|
|
5552 <p><strong><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-topos+theory'>(∞,1)-topos theory</a></strong></p> |
|
|
|
5553 |
|
|
|
5554 <h2 id='background'>Background</h2> |
|
|
|
5555 |
|
|
|
5556 <ul> |
|
|
|
5557 <li> |
|
|
|
5558 <p><a class='existingWikiWord' href='/nlab/show/sheaf+and+topos+theory'>sheaf and topos theory</a></p> |
|
|
|
5559 </li> |
|
|
|
5560 |
|
|
|
5561 <li> |
|
|
|
5562 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category'>(∞,1)-category</a></p> |
|
|
|
5563 </li> |
|
|
|
5564 |
|
|
|
5565 <li> |
|
|
|
5566 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-functor'>(∞,1)-functor</a></p> |
|
|
|
5567 </li> |
|
|
|
5568 |
|
|
|
5569 <li> |
|
|
|
5570 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-presheaf'>(∞,1)-presheaf</a></p> |
|
|
|
5571 </li> |
|
|
|
5572 |
|
|
|
5573 <li> |
|
|
|
5574 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-presheaves'>(∞,1)-category of (∞,1)-presheaves</a></p> |
|
|
|
5575 </li> |
|
|
|
5576 </ul> |
|
|
|
5577 |
|
|
|
5578 <h2 id='definitions'>Definitions</h2> |
|
|
|
5579 |
|
|
|
5580 <ul> |
|
|
|
5581 <li> |
|
|
|
5582 <p><a class='existingWikiWord' href='/nlab/show/elementary+%28infinity%2C1%29-topos'>elementary (∞,1)-topos</a></p> |
|
|
|
5583 </li> |
|
|
|
5584 |
|
|
|
5585 <li> |
|
|
|
5586 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-site'>(∞,1)-site</a></p> |
|
|
|
5587 </li> |
|
|
|
5588 |
|
|
|
5589 <li> |
|
|
|
5590 <p><a class='existingWikiWord' href='/nlab/show/reflective+sub-%28infinity%2C1%29-category'>reflective sub-(∞,1)-category</a></p> |
|
|
|
5591 |
|
|
|
5592 <ul> |
|
|
|
5593 <li> |
|
|
|
5594 <p><a class='existingWikiWord' href='/nlab/show/localization+of+an+%28infinity%2C1%29-category'>localization of an (∞,1)-category</a></p> |
|
|
|
5595 </li> |
|
|
|
5596 |
|
|
|
5597 <li> |
|
|
|
5598 <p><a class='existingWikiWord' href='/nlab/show/topological+localization'>topological localization</a></p> |
|
|
|
5599 </li> |
|
|
|
5600 |
|
|
|
5601 <li> |
|
|
|
5602 <p><a class='existingWikiWord' href='/nlab/show/hypercompletion'>hypercompletion</a></p> |
|
|
|
5603 </li> |
|
|
|
5604 </ul> |
|
|
|
5605 </li> |
|
|
|
5606 |
|
|
|
5607 <li> |
|
|
|
5608 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-sheaves'>(∞,1)-category of (∞,1)-sheaves</a></p> |
|
|
|
5609 |
|
|
|
5610 <ul> |
|
|
|
5611 <li><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-sheaf'>(∞,1)-sheaf</a>/<a class='existingWikiWord' href='/nlab/show/infinity-stack'>∞-stack</a>/<a class='existingWikiWord' href='/nlab/show/derived+stack'>derived stack</a></li> |
|
|
|
5612 </ul> |
|
|
|
5613 </li> |
|
|
|
5614 |
|
|
|
5615 <li> |
|
|
|
5616 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-topos'>(∞,1)-topos</a></p> |
|
|
|
5617 </li> |
|
|
|
5618 |
|
|
|
5619 <li> |
|
|
|
5620 <p><a class='existingWikiWord' href='/nlab/show/%28n%2C1%29-topos'>(n,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/n-topos'>n-topos</a></p> |
|
|
|
5621 |
|
|
|
5622 <ul> |
|
|
|
5623 <li> |
|
|
|
5624 <p><a class='existingWikiWord' href='/nlab/show/truncated+object'>n-truncated object</a></p> |
|
|
|
5625 </li> |
|
|
|
5626 |
|
|
|
5627 <li> |
|
|
|
5628 <p><a class='existingWikiWord' href='/nlab/show/connected+object'>n-connected object</a></p> |
|
|
|
5629 </li> |
|
|
|
5630 |
|
|
|
5631 <li> |
|
|
|
5632 <p><a class='existingWikiWord' href='/nlab/show/topos'>(1,1)-topos</a></p> |
|
|
|
5633 |
|
|
|
5634 <ul> |
|
|
|
5635 <li> |
|
|
|
5636 <p><a class='existingWikiWord' href='/nlab/show/presheaf'>presheaf</a></p> |
|
|
|
5637 </li> |
|
|
|
5638 |
|
|
|
5639 <li> |
|
|
|
5640 <p><a class='existingWikiWord' href='/nlab/show/sheaf'>sheaf</a></p> |
|
|
|
5641 </li> |
|
|
|
5642 </ul> |
|
|
|
5643 </li> |
|
|
|
5644 |
|
|
|
5645 <li> |
|
|
|
5646 <p><a class='existingWikiWord' href='/nlab/show/2-topos'>(2,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/2-topos'>2-topos</a></p> |
|
|
|
5647 |
|
|
|
5648 <ul> |
|
|
|
5649 <li><a class='existingWikiWord' href='/nlab/show/%282%2C1%29-presheaf'>(2,1)-presheaf</a></li> |
|
|
|
5650 </ul> |
|
|
|
5651 </li> |
|
|
|
5652 </ul> |
|
|
|
5653 </li> |
|
|
|
5654 |
|
|
|
5655 <li> |
|
|
|
5656 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-quasitopos'>(∞,1)-quasitopos</a></p> |
|
|
|
5657 |
|
|
|
5658 <ul> |
|
|
|
5659 <li> |
|
|
|
5660 <p><a class='existingWikiWord' href='/nlab/show/separated+%28infinity%2C1%29-presheaf'>separated (∞,1)-presheaf</a></p> |
|
|
|
5661 </li> |
|
|
|
5662 |
|
|
|
5663 <li> |
|
|
|
5664 <p><a class='existingWikiWord' href='/nlab/show/quasitopos'>quasitopos</a></p> |
|
|
|
5665 |
|
|
|
5666 <ul> |
|
|
|
5667 <li><a class='existingWikiWord' href='/nlab/show/separated+presheaf'>separated presheaf</a></li> |
|
|
|
5668 </ul> |
|
|
|
5669 </li> |
|
|
|
5670 |
|
|
|
5671 <li> |
|
|
|
5672 <p><span class='newWikiWord'>(2,1)-quasitopos<a href='/nlab/new/%282%2C1%29-quasitopos'>?</a></span></p> |
|
|
|
5673 |
|
|
|
5674 <ul> |
|
|
|
5675 <li><a class='existingWikiWord' href='/nlab/show/separated+%282%2C1%29-presheaf'>separated (2,1)-presheaf</a></li> |
|
|
|
5676 </ul> |
|
|
|
5677 </li> |
|
|
|
5678 </ul> |
|
|
|
5679 </li> |
|
|
|
5680 |
|
|
|
5681 <li> |
|
|
|
5682 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C2%29-topos'>(∞,2)-topos</a></p> |
|
|
|
5683 </li> |
|
|
|
5684 |
|
|
|
5685 <li> |
|
|
|
5686 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2Cn%29-topos'>(∞,n)-topos</a></p> |
|
|
|
5687 </li> |
|
|
|
5688 </ul> |
|
|
|
5689 |
|
|
|
5690 <h2 id='characterization'>Characterization</h2> |
|
|
|
5691 |
|
|
|
5692 <ul> |
|
|
|
5693 <li> |
|
|
|
5694 <p><a class='existingWikiWord' href='/nlab/show/pullback-stable+colimit'>universal colimits</a></p> |
|
|
|
5695 </li> |
|
|
|
5696 |
|
|
|
5697 <li> |
|
|
|
5698 <p><a class='existingWikiWord' href='/nlab/show/%28sub%29object+classifier+in+an+%28infinity%2C1%29-topos'>object classifier</a></p> |
|
|
|
5699 </li> |
|
|
|
5700 |
|
|
|
5701 <li> |
|
|
|
5702 <p><a class='existingWikiWord' href='/nlab/show/groupoid+object+in+an+%28infinity%2C1%29-category'>groupoid object in an (∞,1)-topos</a></p> |
|
|
|
5703 |
|
|
|
5704 <ul> |
|
|
|
5705 <li><a class='existingWikiWord' href='/nlab/show/effective+epimorphism'>effective epimorphism</a></li> |
|
|
|
5706 </ul> |
|
|
|
5707 </li> |
|
|
|
5708 </ul> |
|
|
|
5709 |
|
|
|
5710 <h2 id='morphisms'>Morphisms</h2> |
|
|
|
5711 |
|
|
|
5712 <ul> |
|
|
|
5713 <li> |
|
|
|
5714 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-geometric+morphism'>(∞,1)-geometric morphism</a></p> |
|
|
|
5715 </li> |
|
|
|
5716 |
|
|
|
5717 <li> |
|
|
|
5718 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29Topos'>(∞,1)Topos</a></p> |
|
|
|
5719 </li> |
|
|
|
5720 |
|
|
|
5721 <li> |
|
|
|
5722 <p><a class='existingWikiWord' href='/nlab/show/Lawvere+distribution'>Lawvere distribution</a></p> |
|
|
|
5723 </li> |
|
|
|
5724 </ul> |
|
|
|
5725 |
|
|
|
5726 <h2 id='extra_stuff_structure_and_property'>Extra stuff, structure and property</h2> |
|
|
|
5727 |
|
|
|
5728 <ul> |
|
|
|
5729 <li> |
|
|
|
5730 <p><a class='existingWikiWord' href='/nlab/show/hypercomplete+%28infinity%2C1%29-topos'>hypercomplete (∞,1)-topos</a></p> |
|
|
|
5731 |
|
|
|
5732 <ul> |
|
|
|
5733 <li> |
|
|
|
5734 <p><a class='existingWikiWord' href='/nlab/show/hypercomplete+object'>hypercomplete object</a></p> |
|
|
|
5735 </li> |
|
|
|
5736 |
|
|
|
5737 <li> |
|
|
|
5738 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+theorem'>Whitehead theorem</a></p> |
|
|
|
5739 </li> |
|
|
|
5740 </ul> |
|
|
|
5741 </li> |
|
|
|
5742 |
|
|
|
5743 <li> |
|
|
|
5744 <p><a class='existingWikiWord' href='/nlab/show/over-%28infinity%2C1%29-topos'>over-(∞,1)-topos</a></p> |
|
|
|
5745 </li> |
|
|
|
5746 |
|
|
|
5747 <li> |
|
|
|
5748 <p><a class='existingWikiWord' href='/nlab/show/n-localic+%28infinity%2C1%29-topos'>n-localic (∞,1)-topos</a></p> |
|
|
|
5749 </li> |
|
|
|
5750 |
|
|
|
5751 <li> |
|
|
|
5752 <p><a class='existingWikiWord' href='/nlab/show/locally+n-connected+%28n%2B1%2C1%29-topos'>locally n-connected (n,1)-topos</a></p> |
|
|
|
5753 </li> |
|
|
|
5754 |
|
|
|
5755 <li> |
|
|
|
5756 <p><a class='existingWikiWord' href='/nlab/show/structured+%28infinity%2C1%29-topos'>structured (∞,1)-topos</a></p> |
|
|
|
5757 |
|
|
|
5758 <ul> |
|
|
|
5759 <li><a class='existingWikiWord' href='/nlab/show/geometry+%28for+structured+%28infinity%2C1%29-toposes%29'>geometry (for structured (∞,1)-toposes)</a></li> |
|
|
|
5760 </ul> |
|
|
|
5761 </li> |
|
|
|
5762 |
|
|
|
5763 <li> |
|
|
|
5764 <p><a class='existingWikiWord' href='/nlab/show/locally+n-connected+%28n%2B1%2C1%29-topos'>locally ∞-connected (∞,1)-topos</a>, <a class='existingWikiWord' href='/nlab/show/locally+n-connected+%28n%2B1%2C1%29-topos'>∞-connected (∞,1)-topos</a></p> |
|
|
|
5765 </li> |
|
|
|
5766 |
|
|
|
5767 <li> |
|
|
|
5768 <p><a class='existingWikiWord' href='/nlab/show/%28%E2%88%9E%2C1%29-local+geometric+morphism'>local (∞,1)-topos</a></p> |
|
|
|
5769 |
|
|
|
5770 <ul> |
|
|
|
5771 <li><a class='existingWikiWord' href='/nlab/show/concrete+%28infinity%2C1%29-sheaf'>concrete (∞,1)-sheaf</a></li> |
|
|
|
5772 </ul> |
|
|
|
5773 </li> |
|
|
|
5774 |
|
|
|
5775 <li> |
|
|
|
5776 <p><a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive (∞,1)-topos</a></p> |
|
|
|
5777 </li> |
|
|
|
5778 </ul> |
|
|
|
5779 |
|
|
|
5780 <h2 id='models'>Models</h2> |
|
|
|
5781 |
|
|
|
5782 <ul> |
|
|
|
5783 <li> |
|
|
|
5784 <p><a class='existingWikiWord' href='/nlab/show/presentations+of+%28infinity%2C1%29-sheaf+%28infinity%2C1%29-toposes'>models for ∞-stack (∞,1)-toposes</a></p> |
|
|
|
5785 |
|
|
|
5786 <ul> |
|
|
|
5787 <li> |
|
|
|
5788 <p><a class='existingWikiWord' href='/nlab/show/model+category'>model category</a></p> |
|
|
|
5789 </li> |
|
|
|
5790 |
|
|
|
5791 <li> |
|
|
|
5792 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+functors'>model structure on functors</a></p> |
|
|
|
5793 </li> |
|
|
|
5794 |
|
|
|
5795 <li> |
|
|
|
5796 <p><a class='existingWikiWord' href='/nlab/show/model+site'>model site</a>/<a class='existingWikiWord' href='/nlab/show/sSet-site'>sSet-site</a></p> |
|
|
|
5797 </li> |
|
|
|
5798 |
|
|
|
5799 <li> |
|
|
|
5800 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a></p> |
|
|
|
5801 </li> |
|
|
|
5802 |
|
|
|
5803 <li> |
|
|
|
5804 <p><a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a></p> |
|
|
|
5805 </li> |
|
|
|
5806 |
|
|
|
5807 <li> |
|
|
|
5808 <p><a class='existingWikiWord' href='/nlab/show/Verity+on+descent+for+strict+omega-groupoid+valued+presheaves'>descent for presheaves with values in strict ∞-groupoids</a></p> |
|
|
|
5809 </li> |
|
|
|
5810 </ul> |
|
|
|
5811 </li> |
|
|
|
5812 </ul> |
|
|
|
5813 |
|
|
|
5814 <h2 id='constructions'>Constructions</h2> |
|
|
|
5815 |
|
|
|
5816 <p><strong>structures in a <a class='existingWikiWord' href='/nlab/show/cohesive+%28infinity%2C1%29-topos'>cohesive (∞,1)-topos</a></strong></p> |
|
|
|
5817 |
|
|
|
5818 <ul> |
|
|
|
5819 <li> |
|
|
|
5820 <p><a class='existingWikiWord' href='/nlab/show/shape+of+an+%28infinity%2C1%29-topos'>shape</a> / <a class='existingWikiWord' href='/nlab/show/coshape+of+an+%28infinity%2C1%29-topos'>coshape</a></p> |
|
|
|
5821 </li> |
|
|
|
5822 |
|
|
|
5823 <li> |
|
|
|
5824 <p><a class='existingWikiWord' href='/nlab/show/cohomology'>cohomology</a></p> |
|
|
|
5825 </li> |
|
|
|
5826 |
|
|
|
5827 <li> |
|
|
|
5828 <p><a class='existingWikiWord' href='/nlab/show/homotopy+groups+in+an+%28infinity%2C1%29-topos'>homotopy</a></p> |
|
|
|
5829 |
|
|
|
5830 <ul> |
|
|
|
5831 <li> |
|
|
|
5832 <p><a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+in+a+locally+infinity-connected+%28infinity%2C1%29-topos'>fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a>/<a class='existingWikiWord' href='/nlab/show/fundamental+infinity-groupoid+of+a+locally+infinity-connected+%28infinity%2C1%29-topos'>of a locally ∞-connected (∞,1)-topos</a></p> |
|
|
|
5833 </li> |
|
|
|
5834 |
|
|
|
5835 <li> |
|
|
|
5836 <p><a class='existingWikiWord' href='/nlab/show/categorical+homotopy+groups+in+an+%28infinity%2C1%29-topos'>categorical</a>/<a class='existingWikiWord' href='/nlab/show/geometric+homotopy+groups+in+an+%28infinity%2C1%29-topos'>geometric</a> homotopy groups</p> |
|
|
|
5837 </li> |
|
|
|
5838 |
|
|
|
5839 <li> |
|
|
|
5840 <p><a class='existingWikiWord' href='/nlab/show/Postnikov+tower+in+an+%28infinity%2C1%29-category'>Postnikov tower</a></p> |
|
|
|
5841 </li> |
|
|
|
5842 |
|
|
|
5843 <li> |
|
|
|
5844 <p><a class='existingWikiWord' href='/nlab/show/Whitehead+tower+in+an+%28infinity%2C1%29-topos'>Whitehead tower</a></p> |
|
|
|
5845 </li> |
|
|
|
5846 </ul> |
|
|
|
5847 </li> |
|
|
|
5848 |
|
|
|
5849 <li> |
|
|
|
5850 <p><a class='existingWikiWord' href='/nlab/show/function+algebras+on+infinity-stacks'>rational homotopy</a></p> |
|
|
|
5851 </li> |
|
|
|
5852 |
|
|
|
5853 <li> |
|
|
|
5854 <p><a class='existingWikiWord' href='/nlab/show/dimension'>dimension</a></p> |
|
|
|
5855 |
|
|
|
5856 <ul> |
|
|
|
5857 <li> |
|
|
|
5858 <p><a class='existingWikiWord' href='/nlab/show/homotopy+dimension'>homotopy dimension</a></p> |
|
|
|
5859 </li> |
|
|
|
5860 |
|
|
|
5861 <li> |
|
|
|
5862 <p><a class='existingWikiWord' href='/nlab/show/cohomological+dimension'>cohomological dimension</a></p> |
|
|
|
5863 </li> |
|
|
|
5864 |
|
|
|
5865 <li> |
|
|
|
5866 <p><a class='existingWikiWord' href='/nlab/show/covering+dimension'>covering dimension</a></p> |
|
|
|
5867 </li> |
|
|
|
5868 |
|
|
|
5869 <li> |
|
|
|
5870 <p><a class='existingWikiWord' href='/nlab/show/Heyting+dimension'>Heyting dimension</a></p> |
|
|
|
5871 </li> |
|
|
|
5872 </ul> |
|
|
|
5873 </li> |
|
|
|
5874 </ul> |
|
|
|
5875 <div> |
|
|
|
5876 <p> |
|
|
|
5877 <a href='/nlab/edit/%28infinity%2C1%29-topos+-+contents'>Edit this sidebar</a> |
|
|
|
5878 </p> |
|
|
|
5879 </div></div> |
|
|
|
5880 </div> |
|
|
|
5881 </div> |
|
|
|
5882 |
|
|
|
5883 <h1 id='contents'>Contents</h1> |
|
|
|
5884 <div class='maruku_toc'><ul><li><a href='#definition'>Definition</a></li><li><a href='#interpretation_as_stacks'>Interpretation as <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</a></li><li><a href='#examples'>Examples</a></li><li><a href='#remarks'>Remarks</a></li><li><a href='#properties'>Properties</a></li><li><a href='#related_entries'>Related entries</a></li><li><a href='#references'>References</a></li></ul></div> |
|
|
|
5885 <h2 id='definition'>Definition</h2> |
|
|
|
5886 |
|
|
|
5887 <p><em>Simplicial presheaves</em> over some <a class='existingWikiWord' href='/nlab/show/site'>site</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> are</p> |
|
|
|
5888 |
|
|
|
5889 <ul> |
|
|
|
5890 <li><a class='existingWikiWord' href='/nlab/show/presheaf'>Presheaves</a> with values in the category <a class='existingWikiWord' href='/nlab/show/SimpSet'>SimpSet</a> of simplicial sets, i.e., functors <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>S^{op} \to \Simp\Set</annotation></semantics></math>, i.e., functors <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>S^{op} \to [\Delta^{op}, \Set]</annotation></semantics></math>;</li> |
|
|
|
5891 </ul> |
|
|
|
5892 |
|
|
|
5893 <p>or equivalently, using the Hom-<a class='existingWikiWord' href='/nlab/show/adjoint+functor'>adjunction</a> and symmetry of the <a class='existingWikiWord' href='/nlab/show/closed+monoidal+category'>closed monoidal structure</a> on <a class='existingWikiWord' href='/nlab/show/Cat'>Cat</a></p> |
|
|
|
5894 |
|
|
|
5895 <ul> |
|
|
|
5896 <li>simplicial objects in the category of presheaves, i.e. functors <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>\Delta^{op} \to [S^{op},\Set]</annotation></semantics></math>.</li> |
|
|
|
5897 </ul> |
|
|
|
5898 |
|
|
|
5899 <h2 id='interpretation_as_stacks'>Interpretation as <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-stacks</h2> |
|
|
|
5900 |
|
|
|
5901 <p>Regarding <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>\Simp\Set</annotation></semantics></math> as a <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> using the standard <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+sets'>model structure on simplicial sets</a> and inducing from that a model structure on <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S^{op}, \Simp\Set]</annotation></semantics></math> makes simplicial presheaves a model for <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-stack'>stacks</a>, as described at <a class='existingWikiWord' href='/nlab/show/infinity-stack+homotopically'>infinity-stack homotopically</a>.</p> |
|
|
|
5902 |
|
|
|
5903 <p>In more illustrative language this means that a simplicial presheaf on <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> can be regarded as an <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-groupoid'>groupoid</a> (in particular a <a class='existingWikiWord' href='/nlab/show/Kan+complex'>Kan complex</a>) whose space of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math>-morphisms is modeled on the objects of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math> in the sense described at <a class='existingWikiWord' href='/nlab/show/space+and+quantity'>space and quantity</a>.</p> |
|
|
|
5904 |
|
|
|
5905 <h2 id='examples'>Examples</h2> |
|
|
|
5906 |
|
|
|
5907 <ul> |
|
|
|
5908 <li> |
|
|
|
5909 <p>Notice that most definitions of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/infinity-category'>category</a> the <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mn>∞</mn></mrow><annotation encoding='application/x-tex'>\infty</annotation></semantics></math>-category is itself defined to be a <a class='existingWikiWord' href='/nlab/show/simplicial+set'>simplicial set</a> with extra structure (in a <a class='existingWikiWord' href='/nlab/show/geometric+definition+of+higher+categories'>geometric definition of higher category</a>) or gives rise to a simplicial set under taking its <a class='existingWikiWord' href='/nlab/show/nerve'>nerve</a> (in an <a class='existingWikiWord' href='/nlab/show/algebraic+definition+of+higher+categories'>algebraic definition of higher category</a>). So most notions of presheaves of higher categories will naturally induce presheaves of simplicial sets.</p> |
|
|
|
5910 </li> |
|
|
|
5911 |
|
|
|
5912 <li> |
|
|
|
5913 <p>In particular, regarding a <a class='existingWikiWord' href='/nlab/show/group'>group</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math> as a one object category <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi></mrow><annotation encoding='application/x-tex'>\mathbf{B}G</annotation></semantics></math> and then taking the nerve <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>N</mi><mo stretchy='false'>(</mo><mstyle mathvariant='bold'><mi>B</mi></mstyle><mi>G</mi><mo stretchy='false'>)</mo><mo>∈</mo><mo lspace='0em' rspace='thinmathspace'>Simp</mo><mo lspace='0em' rspace='thinmathspace'>Set</mo></mrow><annotation encoding='application/x-tex'>N(\mathbf{B}G) \in \Simp\Set</annotation></semantics></math> of these (the “classifying simplicial set of the group whose <a class='existingWikiWord' href='/nlab/show/geometric+realization'>geometric realization</a> is the <a class='existingWikiWord' href='/nlab/show/classifying+space'>classifying space</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℬ</mi><mi>G</mi></mrow><annotation encoding='application/x-tex'>\mathcal{B}G</annotation></semantics></math>), which is clearly a functorial operation, turns any presheaf with values in groups into a simplicial presheaf.</p> |
|
|
|
5914 </li> |
|
|
|
5915 </ul> |
|
|
|
5916 |
|
|
|
5917 <h2 id='remarks'>Remarks</h2> |
|
|
|
5918 |
|
|
|
5919 <ul> |
|
|
|
5920 <li>There are various useful <a class='existingWikiWord' href='/nlab/show/model+category'>model category</a> structures on the category of simplicial presheaves. See <a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a>.</li> |
|
|
|
5921 </ul> |
|
|
|
5922 |
|
|
|
5923 <h2 id='properties'>Properties</h2> |
|
|
|
5924 |
|
|
|
5925 <p>Here are some basic but useful facts about simplicial presheaves.</p> |
|
|
|
5926 |
|
|
|
5927 <div class='un_prop'> |
|
|
|
5928 <h6 id='proposition'>Proposition</h6> |
|
|
|
5929 |
|
|
|
5930 <p>Every simplicial presheaf <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math> is a <a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy colimit</a> over a <a class='existingWikiWord' href='/nlab/show/diagram'>diagram</a> of <a class='existingWikiWord' href='/nlab/show/Set'>Set</a>-valued sheaves regarded as discrete simplicial sheaves.</p> |
|
|
|
5931 |
|
|
|
5932 <p>More precisely, for <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>X</mi><mo>:</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>→</mo><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>X : S^{op} \to SSet</annotation></semantics></math> a simplicial presheaf, let <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mo>:</mo><msup><mi>Δ</mi> <mi>op</mi></msup><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy='false'>]</mo><mo>↪</mo><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>op</mi></msup><mo>,</mo><mi>SSet</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>D_X : \Delta^{op} \to [S^{op},Set] \hookrightarrow [S^{op},SSet]</annotation></semantics></math> be given by <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>D</mi> <mi>X</mi></msub><mo>:</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>↦</mo><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>D_X : [n] \mapsto X_n</annotation></semantics></math>. Then there is a weak equivalence</p> |
|
|
|
5933 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>hocolim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>D</mi> <mi>X</mi></msub><mo stretchy='false'>(</mo><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo stretchy='false'>)</mo><mover><mo>→</mo><mo>≃</mo></mover><mi>X</mi><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5934 hocolim_{[n] \in \Delta} D_X([n]) \stackrel{\simeq}{\to} X |
|
|
|
5935 \,. |
|
|
|
5936 |
|
|
|
5937 </annotation></semantics></math></div></div> |
|
|
|
5938 |
|
|
|
5939 <div class='proof'> |
|
|
|
5940 <h6 id='proof'>Proof</h6> |
|
|
|
5941 |
|
|
|
5942 <p>See for instance <a href='http://www.math.uiuc.edu/K-theory/0563/spre.pdf#page=6'>remark 2.1, p. 6</a></p> |
|
|
|
5943 |
|
|
|
5944 <ul> |
|
|
|
5945 <li><a class='existingWikiWord' href='/nlab/show/Daniel+Dugger'>Daniel Dugger</a>, <a class='existingWikiWord' href='/nlab/show/Sharon+Hollander'>Sharon Hollander</a>, <a class='existingWikiWord' href='/nlab/show/Daniel+Isaksen'>Daniel Isaksen</a>, <em>Hypercovers and simplicial presheaves</em>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 136 Issue 1, 2004 (<a href='https://arxiv.org/abs/math/0205027'>arXiv:math/0205027</a>, <a href='http://www.math.uiuc.edu/K-theory/0563'>K-theory:0563</a>, <a href='https://doi.org/10.1017/S0305004103007175'>doi:10.1017/S0305004103007175</a>)</li> |
|
|
|
5946 </ul> |
|
|
|
5947 |
|
|
|
5948 <p>(which is otherwise about <a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a>).</p> |
|
|
|
5949 </div> |
|
|
|
5950 |
|
|
|
5951 <div class='un_cor'> |
|
|
|
5952 <h6 id='corollary'>Corollary</h6> |
|
|
|
5953 |
|
|
|
5954 <p>Let <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo><mo>:</mo><mo stretchy='false'>(</mo><msup><mi>SSet</mi> <mrow><msup><mi>S</mi> <mi>op</mi></msup></mrow></msup><msup><mo stretchy='false'>)</mo> <mi>op</mi></msup><mo>×</mo><msup><mi>SSet</mi> <mrow><msup><mi>S</mi> <mi>op</mi></msup></mrow></msup><mo>→</mo><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>[-,-] : (SSet^{S^{op}})^{op} \times SSet^{S^{op}} \to SSet</annotation></semantics></math> be the canonical <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>SSet</mi></mrow><annotation encoding='application/x-tex'>SSet</annotation></semantics></math>-enrichment of the category of simplicial presheaves (i.e. the assignment of <a class='existingWikiWord' href='/nlab/show/SimpSet'>SSet</a>-<a class='existingWikiWord' href='/nlab/show/enriched+functor+category'>enriched functor categories</a>).</p> |
|
|
|
5955 |
|
|
|
5956 <p>It follows in particular from the above that every such <a class='existingWikiWord' href='/nlab/show/hom-object'>hom-object</a> <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[X,A]</annotation></semantics></math> of simplical presheaves can be written as a <a class='existingWikiWord' href='/nlab/show/homotopy+limit'>homotopy limit</a> (in <a class='existingWikiWord' href='/nlab/show/SimpSet'>SSet</a> for instance realized as a <a class='existingWikiWord' href='/nlab/show/weighted+limit'>weighted limit</a>, as described there) over evaluations of <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>.</p> |
|
|
|
5957 </div> |
|
|
|
5958 |
|
|
|
5959 <div class='proof'> |
|
|
|
5960 <h6 id='proof_2'>Proof</h6> |
|
|
|
5961 |
|
|
|
5962 <p>First the above yields</p> |
|
|
|
5963 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mo stretchy='false'>[</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd> <mtd><mo>≃</mo><mo stretchy='false'>[</mo><msub><mi>hocolim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>X</mi> <mi>n</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><mo stretchy='false'>[</mo><msub><mi>X</mi> <mi>n</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5964 \begin{aligned} |
|
|
|
5965 [X, A ] & \simeq [ hocolim_{[n] \in \Delta} X_n , A ] |
|
|
|
5966 \\ |
|
|
|
5967 & holim_{[n] \in \Delta} [X_n, A] |
|
|
|
5968 \end{aligned} |
|
|
|
5969 \,. |
|
|
|
5970 |
|
|
|
5971 </annotation></semantics></math></div> |
|
|
|
5972 <p>Next from the <a class='existingWikiWord' href='/nlab/show/co-Yoneda+lemma'>co-Yoneda lemma</a> we know that the <a class='existingWikiWord' href='/nlab/show/Set'>Set</a>-valued presheaves <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>X</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>X_n</annotation></semantics></math> are in turn colimits over representables in <math class='maruku-mathml' display='inline' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math>, so that</p> |
|
|
|
5973 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>⋯</mi></mtd> <mtd><mo>≃</mo><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><mo stretchy='false'>[</mo><msub><mi>colim</mi> <mi>i</mi></msub><msub><mi>U</mi> <mi>i</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>≃</mo><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>lim</mi> <mi>i</mi></msub><mo stretchy='false'>[</mo><msub><mi>U</mi> <mi>i</mi></msub><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5974 \begin{aligned} |
|
|
|
5975 \cdots & \simeq |
|
|
|
5976 holim_{[n] \in \Delta} |
|
|
|
5977 [ colim_i U_{i}, A] |
|
|
|
5978 \\ |
|
|
|
5979 & \simeq |
|
|
|
5980 holim_{[n] \in \Delta} lim_i |
|
|
|
5981 [ U_{i}, A] |
|
|
|
5982 \end{aligned} |
|
|
|
5983 \,. |
|
|
|
5984 |
|
|
|
5985 </annotation></semantics></math></div> |
|
|
|
5986 <p>And finally the <a class='existingWikiWord' href='/nlab/show/Yoneda+lemma'>Yoneda lemma</a> reduces this to</p> |
|
|
|
5987 <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_ebe0afcebcbc829252dcf548033d67aad4bfd643_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable columnalign='right left right left right left right left right left' columnspacing='0em' displaystyle='true'><mtr><mtd><mi>⋯</mi></mtd> <mtd><msub><mi>holim</mi> <mrow><mo stretchy='false'>[</mo><mi>n</mi><mo stretchy='false'>]</mo><mo>∈</mo><mi>Δ</mi></mrow></msub><msub><mi>lim</mi> <mi>i</mi></msub><mi>A</mi><mo stretchy='false'>(</mo><msub><mi>U</mi> <mi>i</mi></msub><mo stretchy='false'>)</mo></mtd></mtr></mtable></mrow><mspace width='thinmathspace'></mspace><mo>.</mo></mrow><annotation encoding='application/x-tex'> |
|
|
|
5988 \begin{aligned} |
|
|
|
5989 \cdots |
|
|
|
5990 & |
|
|
|
5991 holim_{[n] \in \Delta} lim_i |
|
|
|
5992 A(U_i) |
|
|
|
5993 \end{aligned} |
|
|
|
5994 \,. |
|
|
|
5995 |
|
|
|
5996 </annotation></semantics></math></div></div> |
|
|
|
5997 |
|
|
|
5998 <p>Notice that these kinds of computations are in particular often used when checking/computing <a class='existingWikiWord' href='/nlab/show/descent'>descent and codescent</a> along a <a class='existingWikiWord' href='/nlab/show/cover'>cover</a> or <a class='existingWikiWord' href='/nlab/show/hypercover'>hypercover</a>. For more on that in the context of simplicial presheaves see <a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a>.</p> |
|
|
|
5999 |
|
|
|
6000 <h2 id='related_entries'>Related entries</h2> |
|
|
|
6001 |
|
|
|
6002 <ul> |
|
|
|
6003 <li> |
|
|
|
6004 <p><a class='existingWikiWord' href='/nlab/show/model+structure+on+simplicial+presheaves'>model structure on simplicial presheaves</a></p> |
|
|
|
6005 </li> |
|
|
|
6006 |
|
|
|
6007 <li> |
|
|
|
6008 <p><a class='existingWikiWord' href='/nlab/show/descent+for+simplicial+presheaves'>descent for simplicial presheaves</a></p> |
|
|
|
6009 </li> |
|
|
|
6010 |
|
|
|
6011 <li> |
|
|
|
6012 <p><a class='existingWikiWord' href='/nlab/show/sheaf+of+spectra'>presheaf of spectra</a></p> |
|
|
|
6013 </li> |
|
|
|
6014 </ul> |
|
|
|
6015 |
|
|
|
6016 <p>Applications appear for instance at</p> |
|
|
|
6017 |
|
|
|
6018 <ul> |
|
|
|
6019 <li><a class='existingWikiWord' href='/nlab/show/geometric+infinity-function+theory'>geometric infinity-function theory</a></li> |
|
|
|
6020 </ul> |
|
|
|
6021 |
|
|
|
6022 <h2 id='references'>References</h2> |
|
|
|
6023 |
|
|
|
6024 <p>The original articles are</p> |
|
|
|
6025 |
|
|
|
6026 <ul> |
|
|
|
6027 <li> |
|
|
|
6028 <p><a class='existingWikiWord' href='/nlab/show/Kenneth+Brown'>Kenneth S. Brown</a>, <em>Abstract homotopy theory and generalized sheaf cohomology</em>. Transactions of the American Mathematical Society 186 (1973), 419-419. <a href='http://dx.doi.org/10.1090/s0002-9947-1973-0341469-9'>doi</a>.</p> |
|
|
|
6029 </li> |
|
|
|
6030 |
|
|
|
6031 <li> |
|
|
|
6032 <p><a class='existingWikiWord' href='/nlab/show/Kenneth+Brown'>Kenneth S. Brown</a>, <a class='existingWikiWord' href='/nlab/show/Stephen+M.+Gersten'>Stephen M. Gersten</a>, <em>Algebraic K-theory as generalized sheaf cohomology</em>. In: Higher K-Theories. Lecture Notes in Mathematics (1973), 266–292. <a href='http://dx.doi.org/10.1007/bfb0067062'>doi</a>.</p> |
|
|
|
6033 </li> |
|
|
|
6034 |
|
|
|
6035 <li> |
|
|
|
6036 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Simplicial objects in a Grothendieck topos</em>. In: Applications of algebraic K-theory to algebraic geometry and number theory. Contemporary Mathematics (1986), 193-239. <a href='http://dx.doi.org/10.1090/conm/055.1/862637'>doi</a></p> |
|
|
|
6037 </li> |
|
|
|
6038 |
|
|
|
6039 <li> |
|
|
|
6040 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Simplical presheaves</em>. Journal of Pure and Applied Algebra 47:1 (1987), 35-87. <a href='http://dx.doi.org/10.1016/0022-4049(87)90100-9'>doi</a></p> |
|
|
|
6041 </li> |
|
|
|
6042 </ul> |
|
|
|
6043 |
|
|
|
6044 <p>A modern expository account is</p> |
|
|
|
6045 |
|
|
|
6046 <ul> |
|
|
|
6047 <li><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>John F. Jardine</a>, <em>Local Homotopy Theory</em>, Springer, 2015. <a href='http://dx.doi.org/10.1007/978-1-4939-2300-7'>doi</a>.</li> |
|
|
|
6048 </ul> |
|
|
|
6049 |
|
|
|
6050 <p>Further articles:</p> |
|
|
|
6051 |
|
|
|
6052 <ul> |
|
|
|
6053 <li> |
|
|
|
6054 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Stacks and the homotopy theory of simplicial sheaves</em>. Homology, Homotopy and Applications 3:2 (2001), 361-384. <a href='http://dx.doi.org/10.4310/hha.2001.v3.n2.a5'>doi</a>.</p> |
|
|
|
6055 </li> |
|
|
|
6056 |
|
|
|
6057 <li> |
|
|
|
6058 <p><a class='existingWikiWord' href='/nlab/show/John+Frederick+Jardine'>J. F. Jardine</a>, <em>Fields Lectures: Simplicial presheaves</em>. <a href='https://www.uwo.ca/math/faculty/jardine/courses/fields/fields-01.pdf'>PDF</a>.</p> |
|
|
|
6059 </li> |
|
|
|
6060 </ul> |
|
|
|
6061 |
|
|
|
6062 <p>For their interpretation in the more general context of <a class='existingWikiWord' href='/nlab/show/%28infinity%2C1%29-category+of+%28infinity%2C1%29-sheaves'>(infinity,1)-sheaves</a> see Section 6.5.2 of</p> |
|
|
|
6063 |
|
|
|
6064 <ul> |
|
|
|
6065 <li><a class='existingWikiWord' href='/nlab/show/Jacob+Lurie'>Jacob Lurie</a>, <a class='existingWikiWord' href='/nlab/show/Higher+Topos+Theory'>Higher Topos Theory</a>.</li> |
|
|
|
6066 </ul> |
|
|
|
6067 |
|
|
|
6068 <p> |
|
|
|
6069 </p> |
|
|
|
6070 |
|
|
|
6071 <p> |
|
|
|
6072 |
|
|
|
6073 </p> |
|
|
|
6074 |
|
|
|
6075 <p> |
|
|
|
6076 </p> </div> |
|
|
|
6077 </content> |
|
|
|
6078 </entry> |
|
|
|
6079 <entry> |
|
|
|
6080 <title type="html">Milky Way</title> |
|
|
|
6081 <link rel="alternate" type="application/xhtml+xml" href="https://ncatlab.org/nlab/show/Milky+Way"/> |
|
|
|
6082 <updated>2021-07-01T10:22:24Z</updated> |
|
|
|
6083 <published>2019-04-10T13:55:53Z</published> |
|
|
|
6084 <id>tag:ncatlab.org,2019-04-10:nLab,Milky+Way</id> |
|
|
|
6085 <author> |
|
|
|
6086 <name>Urs Schreiber</name> |
|
|
|
6087 </author> |
|
|
|
6088 <content type="xhtml" xml:base="https://ncatlab.org/nlab/show/Milky+Way"> |
|
|
|
6089 <div xmlns="http://www.w3.org/1999/xhtml"> |
|
|
|
6090 <div class='rightHandSide'> |
|
|
|
6091 <div class='toc clickDown' tabindex='0'> |
|
|
|
6092 <h3 id='context'>Context</h3> |
|
|
|
6093 |
|
|
|
6094 <h4 id='physics'>Physics</h4> |
|
|
|
6095 |
|
|
|
6096 <div class='hide'> |
|
|
|
6097 <p><strong><a class='existingWikiWord' href='/nlab/show/physics'>physics</a></strong>, <a class='existingWikiWord' href='/nlab/show/mathematical+physics'>mathematical physics</a>, <a class='existingWikiWord' href='/nlab/show/philosophy+of+physics'>philosophy of physics</a></p> |
|
|
|
6098 |
|
|
|
6099 <h2 id='surveys_textbooks_and_lecture_notes'>Surveys, textbooks and lecture notes</h2> |
|
|
|
6100 |
|
|
|
6101 <ul> |
|
|
|
6102 <li> |
|
|
|
6103 <p><em><a class='existingWikiWord' href='/nlab/show/higher+category+theory+and+physics'>(higher) category theory and physics</a></em></p> |
|
|
|
6104 </li> |
|
|
|
6105 |
|
|
|
6106 <li> |
|
|
|
6107 <p><em><a class='existingWikiWord' href='/nlab/show/geometry+of+physics'>geometry of physics</a></em></p> |
|
|
|
6108 </li> |
|
|
|
6109 |
|
|
|
6110 <li> |
|
|
|
6111 <p><a class='existingWikiWord' href='/nlab/show/books+and+reviews+in+mathematical+physics'>books and reviews</a>, <a class='existingWikiWord' href='/nlab/show/physics+resources'>physics resources</a></p> |
|
|
|
6112 </li> |
|
|
|
6113 </ul> |
|
|
|
6114 <hr/> |
|
|
|
6115 <p><a class='existingWikiWord' href='/nlab/show/theory+%28physics%29'>theory (physics)</a>, <a class='existingWikiWord' href='/nlab/show/model+%28in+theoretical+physics%29'>model (physics)</a></p> |
|
|
|
6116 |
|
|
|
6117 <p><a class='existingWikiWord' href='/nlab/show/experimental+observation'>experiment</a>, <a class='existingWikiWord' href='/nlab/show/measurement'>measurement</a>, <a class='existingWikiWord' href='/nlab/show/computable+physics'>computable physics</a></p> |
|
|
|
6118 |
|
|
|
6119 <ul> |
|
|
|
6120 <li> |
|
|
|
6121 <p><strong><a class='existingWikiWord' href='/nlab/show/mechanics'>mechanics</a></strong></p> |
|
|
|
6122 |
|
|
|
6123 <ul> |
|
|
|
6124 <li> |
|
|
|
6125 <p><a class='existingWikiWord' href='/nlab/show/mass'>mass</a>, <a class='existingWikiWord' href='/nlab/show/charge'>charge</a>, <a class='existingWikiWord' href='/nlab/show/momentum'>momentum</a>, <a class='existingWikiWord' href='/nlab/show/angular+momentum'>angular momentum</a>, <a class='existingWikiWord' href='/nlab/show/moment+of+inertia'>moment of inertia</a></p> |
|
|
|
6126 </li> |
|
|
|
6127 |
|
|
|
6128 <li> |
|
|
|
6129 <p><a class='existingWikiWord' href='/nlab/show/Hamiltonian+dynamics+on+Lie+groups'>dynamics on Lie groups</a></p> |
|
|
|
6130 |
|
|
|
6131 <ul> |
|
|
|
6132 <li><a class='existingWikiWord' href='/nlab/show/rigid+body+dynamics'>rigid body dynamics</a></li> |
|
|
|
6133 </ul> |
|
|
|
6134 </li> |
|
|
|
6135 </ul> |
|
|
|
6136 </li> |
|
|
|
6137 |
|
|
|
6138 <li> |
|
|
|
6139 <p><a class='existingWikiWord' href='/nlab/show/field+%28physics%29'>field (physics)</a></p> |
|
|
|
6140 |
|
|
|
6141 <ul> |
|
|
|
6142 <li> |
|
|
|
6143 <p><a class='existingWikiWord' href='/nlab/show/Lagrangian+density'>Lagrangian mechanics</a></p> |
|
|
|
6144 |
|
|
|
6145 <ul> |
|
|
|
6146 <li> |
|
|
|
6147 <p><a class='existingWikiWord' href='/nlab/show/configuration+space'>configuration space</a>, <a class='existingWikiWord' href='/nlab/show/state'>state</a></p> |
|
|
|
6148 </li> |
|
|
|
6149 |
|
|
|
6150 <li> |
|
|
|
6151 <p><a class='existingWikiWord' href='/nlab/show/action+functional'>action functional</a>, <a class='existingWikiWord' href='/nlab/show/Lagrangian+density'>Lagrangian</a></p> |
|
|
|
6152 </li> |
|
|
|
6153 |
|
|
|
6154 <li> |
|
|
|
6155 <p><a class='existingWikiWord' href='/nlab/show/phase+space'>covariant phase space</a>, <a class='existingWikiWord' href='/nlab/show/Euler-Lagrange+equation'>Euler-Lagrange equations</a></p> |
|
|
|
6156 </li> |
|
|
|
6157 </ul> |
|
|
|
6158 </li> |
|
|
|
6159 |
|
|
|
6160 <li> |
|
|
|
6161 <p><a class='existingWikiWord' href='/nlab/show/Hamiltonian+mechanics'>Hamiltonian mechanics</a></p> |
|
|
|
6162 |
|
|
|
6163 <ul> |
|
|
|
6164 <li> |
|
|
|
6165 <p><a class='existingWikiWord' href='/nlab/show/phase+space'>phase space</a></p> |
|
|
|
6166 </li> |
|
|
|
6167 |
|
|
|
6168 <li> |
|
|
|
6169 <p><a class='existingWikiWord' href='/nlab/show/symplectic+geometry'>symplectic geometry</a></p> |
|
|
|
6170 |
|
|
|
6171 <ul> |
|
|
|
6172 <li> |
|
|
|
6173 <p><a class='existingWikiWord' href='/nlab/show/Poisson+manifold'>Poisson manifold</a></p> |
|
|
|
6174 </li> |
|
|
|
6175 |
|
|
|
6176 <li> |
|
|
|
6177 <p><a class='existingWikiWord' href='/nlab/show/symplectic+manifold'>symplectic manifold</a></p> |
|
|
|
6178 </li> |
|
|
|
6179 |
|
|
|
6180 <li> |
|
|
|
6181 <p><a class='existingWikiWord' href='/nlab/show/symplectic+groupoid'>symplectic groupoid</a></p> |
|
|
|
6182 </li> |
|
|
|
6183 </ul> |
|
|
|
6184 </li> |
|
|
|
6185 |
|
|
|
6186 <li> |
|
|
|
6187 <p><a class='existingWikiWord' href='/nlab/show/multisymplectic+geometry'>multisymplectic geometry</a></p> |
|
|
|
6188 |
|
|
|
6189 <ul> |
|
|
|
6190 <li><a class='existingWikiWord' href='/nlab/show/symplectic+Lie+n-algebroid'>n-symplectic manifold</a></li> |
|
|
|
6191 </ul> |
|
|
|
6192 </li> |
|
|
|
6193 </ul> |
|
|
|
6194 </li> |
|
|
|
6195 |
|
|
|
6196 <li> |
|
|
|
6197 <p><a class='existingWikiWord' href='/nlab/show/spacetime'>spacetime</a></p> |
|
|
|
6198 |
|
|
|
6199 <ul> |
|
|
|
6200 <li> |
|
|
|
6201 <p><a class='existingWikiWord' href='/nlab/show/smooth+Lorentzian+space'>smooth Lorentzian manifold</a></p> |
|
|
|
6202 </li> |
|
|
|
6203 |
|
|
|
6204 <li> |
|
|
|
6205 <p><a class='existingWikiWord' href='/nlab/show/special+relativity'>special relativity</a></p> |
|
|
|
6206 </li> |
|
|
|
6207 |
|
|
|
6208 <li> |
|
|
|
6209 <p><a class='existingWikiWord' href='/nlab/show/general+relativity'>general relativity</a></p> |
|
|
|
6210 </li> |
|
|
|
6211 |
|
|
|
6212 <li> |
|
|
|
6213 <p><a class='existingWikiWord' href='/nlab/show/gravity'>gravity</a></p> |
|
|
|
6214 |
|
|
|
6215 <ul> |
|
|
|
6216 <li> |
|
|
|
6217 <p><a class='existingWikiWord' href='/nlab/show/supergravity'>supergravity</a>, <a class='existingWikiWord' href='/nlab/show/dilaton'>dilaton gravity</a></p> |
|
|
|
6218 </li> |
|
|
|
6219 |
|
|
|
6220 <li> |
|
|
|
6221 <p><a class='existingWikiWord' href='/nlab/show/black+hole'>black hole</a></p> |
|
|
|
6222 </li> |
|
|
|
6223 </ul> |
|
|
|
6224 </li> |
|
|
|
6225 </ul> |
|
|
|
6226 </li> |
|
|
|
6227 </ul> |
|
|
|
6228 </li> |
|
|
|
6229 |
|
|
|
6230 <li> |
|
|
|
6231 <p><strong><a class='existingWikiWord' href='/nlab/show/classical+field+theory'>Classical field theory</a></strong></p> |
|
|
|
6232 |
|
|
|
6233 <ul> |
|
|
|
6234 <li> |
|
|
|
6235 <p><a class='existingWikiWord' href='/nlab/show/classical+physics'>classical physics</a></p> |
|
|
|
6236 |
|
|
|
6237 <ul> |
|
|
|
6238 <li><a class='existingWikiWord' href='/nlab/show/classical+mechanics'>classical mechanics</a></li> |
|
|
|
6239 |
|
|
|
6240 <li><a class='existingWikiWord' href='/nlab/show/wave'>waves</a> and <a class='existingWikiWord' href='/nlab/show/optics'>optics</a></li> |
|
|
|
6241 |
|
|
|
6242 <li><a class='existingWikiWord' href='/nlab/show/thermodynamics'>thermodynamics</a></li> |
|
|
|
6243 </ul> |
|
|
|
6244 </li> |
|
|
|
6245 </ul> |
|
|
|
6246 </li> |
|
|
|
6247 |
|
|
|
6248 <li> |
|
|
|
6249 <p><strong><a class='existingWikiWord' href='/nlab/show/quantum+mechanics'>Quantum Mechanics</a></strong></p> |
|
|
|
6250 |
|
|
|
6251 <ul> |
|
|
|
6252 <li> |
|
|
|
6253 <p><a class='existingWikiWord' href='/nlab/show/finite+quantum+mechanics+in+terms+of+dagger-compact+categories'>in terms of ∞-compact categories</a></p> |
|
|
|
6254 </li> |
|
|
|
6255 |
|
|
|
6256 <li> |
|
|
|
6257 <p><a class='existingWikiWord' href='/nlab/show/quantum+information'>quantum information</a></p> |
|
|
|
6258 </li> |
|
|
|
6259 |
|
|
|
6260 <li> |
|
|
|
6261 <p><a class='existingWikiWord' href='/nlab/show/Hamiltonian'>Hamiltonian operator</a></p> |
|
|
|
6262 </li> |
|
|
|
6263 |
|
|
|
6264 <li> |
|
|
|
6265 <p><a class='existingWikiWord' href='/nlab/show/density+matrix'>density matrix</a></p> |
|
|
|
6266 </li> |
|
|
|
6267 |
|
|
|
6268 <li> |
|
|
|
6269 <p><a class='existingWikiWord' href='/nlab/show/Kochen-Specker+theorem'>Kochen-Specker theorem</a></p> |
|
|
|
6270 </li> |
|
|
|
6271 |
|
|
|
6272 <li> |
|
|
|
6273 <p><a class='existingWikiWord' href='/nlab/show/Bell%27s+theorem'>Bell's theorem</a></p> |
|
|
|
6274 </li> |
|
|
|
6275 |
|
|
|
6276 <li> |
|
|
|
6277 <p><a class='existingWikiWord' href='/nlab/show/Gleason%27s+theorem'>Gleason's theorem</a></p> |
|
|
|
6278 </li> |
|
|
|
6279 </ul> |
|
|
|
6280 </li> |
|
|
|
6281 |
|
|
|
6282 <li> |
|
|
|
6283 <p><strong><a class='existingWikiWord' href='/nlab/show/quantization'>Quantization</a></strong></p> |
|
|
|
6284 |
|
|
|
6285 <ul> |
|
|
|
6286 <li> |
|
|
|
6287 <p><a class='existingWikiWord' href='/nlab/show/geometric+quantization'>geometric quantization</a></p> |
|
|
|
6288 </li> |
|
|
|
6289 |
|
|
|
6290 <li> |
|
|
|
6291 <p><a class='existingWikiWord' href='/nlab/show/deformation+quantization'>deformation quantization</a></p> |
|
|
|
6292 </li> |
|
|
|
6293 |
|
|
|
6294 <li> |
|
|
|
6295 <p><a class='existingWikiWord' href='/nlab/show/path+integral'>path integral quantization</a></p> |
|
|
|
6296 </li> |
|
|
|
6297 |
|
|
|
6298 <li> |
|
|
|
6299 <p><a class='existingWikiWord' href='/nlab/show/semiclassical+approximation'>semiclassical approximation</a></p> |
|
|
|
6300 </li> |
|
|
|
6301 </ul> |
|
|
|
6302 </li> |
|
|
|
6303 |
|
|
|
6304 <li> |
|
|
|
6305 <p><strong><a class='existingWikiWord' href='/nlab/show/quantum+field+theory'>Quantum Field Theory</a></strong></p> |
|
|
|
6306 |
|
|
|
6307 <ul> |
|
|
|
6308 <li> |
|
|
|
6309 <p>Axiomatizations</p> |
|
|
|
6310 |
|
|
|
6311 <ul> |
|
|
|
6312 <li> |
|
|
|
6313 <p><a class='existingWikiWord' href='/nlab/show/AQFT'>algebraic QFT</a></p> |
|
|
|
6314 |
|
|
|
6315 <ul> |
|
|
|
6316 <li> |
|
|
|
6317 <p><a class='existingWikiWord' href='/nlab/show/Wightman+axioms'>Wightman axioms</a></p> |
|
|
|
6318 </li> |
|
|
|
6319 |
|
|
|
6320 <li> |
|
|
|
6321 <p><a class='existingWikiWord' href='/nlab/show/Haag-Kastler+axioms'>Haag-Kastler axioms</a></p> |
|
|
|
6322 |
|
|
|
6323 <ul> |
|
|
|
6324 <li> |
|
|
|
6325 <p><a class='existingWikiWord' href='/nlab/show/operator+algebra'>operator algebra</a></p> |
|
|
|
6326 </li> |
|
|
|
6327 |
|
|
|
6328 <li> |
|
|
|
6329 <p><a class='existingWikiWord' href='/nlab/show/causally+local+net+of+observables'>local net</a></p> |
|
|
|
6330 </li> |
|
|
|
6331 </ul> |
|
|
|
6332 </li> |
|
|
|
6333 |
|
|
|
6334 <li> |
|
|
|
6335 <p><a class='existingWikiWord' href='/nlab/show/conformal+net'>conformal net</a></p> |
|
|
|
6336 </li> |
|
|
|
6337 |
|
|
|
6338 <li> |
|
|
|
6339 <p><a class='existingWikiWord' href='/nlab/show/Reeh-Schlieder+theorem'>Reeh-Schlieder theorem</a></p> |
|
|
|
6340 </li> |
|
|
|
6341 |
|
|
|
6342 <li> |
|
|
|
6343 <p><a class='existingWikiWord' href='/nlab/show/Osterwalder-Schrader+theorem'>Osterwalder-Schrader theorem</a></p> |
|
|
|
6344 </li> |
|
|
|
6345 |
|
|
|
6346 <li> |
|
|
|
6347 <p><a class='existingWikiWord' href='/nlab/show/PCT+theorem'>PCT theorem</a></p> |
|
|
|
6348 </li> |
|
|
|
6349 |
|
|
|
6350 <li> |
|
|
|
6351 <p><a class='existingWikiWord' href='/nlab/show/Bisognano-Wichmann+theorem'>Bisognano-Wichmann theorem</a></p> |
|
|
|
6352 |
|
|
|
6353 <ul> |
|
|
|
6354 <li><a class='existingWikiWord' href='/nlab/show/modular+theory'>modular theory</a></li> |
|
|
|
6355 </ul> |
|
|
|
6356 </li> |
|
|
|
6357 |
|
|
|
6358 <li> |
|
|
|
6359 <p><a class='existingWikiWord' href='/nlab/show/spin-statistics+theorem'>spin-statistics theorem</a></p> |
|
|
|
6360 |
|
|
|
6361 <ul> |
|
|
|
6362 <li><a class='existingWikiWord' href='/nlab/show/boson'>boson</a>, <a class='existingWikiWord' href='/nlab/show/fermion'>fermion</a></li> |
|
|
|
6363 </ul> |
|
|
|
6364 </li> |
|
|
|
6365 </ul> |
|
|
|
6366 </li> |
|
|
|
6367 |
|
|
|
6368 <li> |
|
|
|
6369 <p><a class='existingWikiWord' href='/nlab/show/functorial+field+theory'>functorial QFT</a></p> |
|
|
|
6370 |
|
|
|
6371 <ul> |
|
|
|
6372 <li> |
|
|
|
6373 <p><a class='existingWikiWord' href='/nlab/show/cobordism'>cobordism</a></p> |
|
|
|
6374 </li> |
|
|
|
6375 |
|
|
|
6376 <li> |
|
|
|
6377 <p><a class='existingWikiWord' href='/nlab/show/%28infinity%2Cn%29-category+of+cobordisms'>(∞,n)-category of cobordisms</a></p> |
|
|
|
6378 </li> |
|
|
|
6379 |
|
|
|
6380 <li> |
|
|
|
6381 <p><a class='existingWikiWord' href='/nlab/show/cobordism+hypothesis'>cobordism hypothesis</a>-theorem</p> |
|
|
|
6382 </li> |
|
|
|
6383 |
|
|
|
6384 <li> |
|
|
|
6385 <p><a class='existingWikiWord' href='/nlab/show/extended+topological+quantum+field+theory'>extended topological quantum field theory</a></p> |
|
|
|
6386 </li> |
|
|
|
6387 </ul> |
|
|
|
6388 </li> |
|
|
|
6389 </ul> |
|
|
|
6390 </li> |
|
|
|
6391 |
|
|
|
6392 <li> |
|
|
|
6393 <p>Tools</p> |
|
|
|
6394 |
|
|
|
6395 <ul> |
|
|
|
6396 <li> |
|
|
|
6397 <p><a class='existingWikiWord' href='/nlab/show/perturbative+quantum+field+theory'>perturbative quantum field theory</a>, <a class='existingWikiWord' href='/nlab/show/vacuum'>vacuum</a></p> |
|
|
|
6398 </li> |
|
|
|
6399 |
|
|
|
6400 <li> |
|
|
|
6401 <p><a class='existingWikiWord' href='/nlab/show/effective+quantum+field+theory'>effective quantum field theory</a></p> |
|
|
|
6402 </li> |
|
|
|
6403 |
|
|
|
6404 <li> |
|
|
|
6405 <p><a class='existingWikiWord' href='/nlab/show/renormalization'>renormalization</a></p> |
|
|
|
6406 </li> |
|
|
|
6407 |
|
|
|
6408 <li> |
|
|
|
6409 <p><a class='existingWikiWord' href='/nlab/show/BV-BRST+formalism'>BV-BRST formalism</a></p> |
|
|
|
6410 </li> |
|
|
|
6411 |
|
|
|
6412 <li> |
|
|
|
6413 <p><a class='existingWikiWord' href='/nlab/show/geometric+infinity-function+theory'>geometric ∞-function theory</a></p> |
|
|
|
6414 </li> |
|
|
|
6415 </ul> |
|
|
|
6416 </li> |
|
|
|
6417 |
|
|
|
6418 <li> |
|
|
|
6419 <p><a class='existingWikiWord' href='/nlab/show/particle+physics'>particle physics</a></p> |
|
|
|
6420 |
|
|
|
6421 <ul> |
|
|
|
6422 <li> |
|
|
|
6423 <p><a class='existingWikiWord' href='/nlab/show/phenomenology'>phenomenology</a></p> |
|
|
|
6424 </li> |
|
|
|
6425 |
|
|
|
6426 <li> |
|
|
|
6427 <p><a class='existingWikiWord' href='/nlab/show/model+%28in+theoretical+physics%29'>models</a></p> |
|
|
|
6428 |
|
|
|
6429 <ul> |
|
|
|
6430 <li> |
|
|
|
6431 <p><a class='existingWikiWord' href='/nlab/show/standard+model+of+particle+physics'>standard model of particle physics</a></p> |
|
|
|
6432 </li> |
|
|
|
6433 |
|
|
|
6434 <li> |
|
|
|
6435 <p><a class='existingWikiWord' href='/nlab/show/fields+and+quanta+-+table'>fields and quanta</a></p> |
|
|
|
6436 </li> |
|
|
|
6437 |
|
|
|
6438 <li> |
|
|
|
6439 <p><a class='existingWikiWord' href='/nlab/show/GUT'>Grand Unified Theories</a>, <a class='existingWikiWord' href='/nlab/show/MSSM'>MSSM</a></p> |
|
|
|
6440 </li> |
|
|
|
6441 </ul> |
|
|
|
6442 </li> |
|
|
|
6443 |
|
|
|
6444 <li> |
|
|
|
6445 <p><a class='existingWikiWord' href='/nlab/show/scattering+amplitude'>scattering amplitude</a></p> |
|
|
|
6446 |
|
|
|
6447 <ul> |
|
|
|
6448 <li><a class='existingWikiWord' href='/nlab/show/on-shell+recursion'>on-shell recursion</a>, <a class='existingWikiWord' href='/nlab/show/KLT+relations'>KLT relations</a></li> |
|
|
|
6449 </ul> |
|
|
|
6450 </li> |
|
|
|
6451 </ul> |
|
|
|
6452 </li> |
|
|
|
6453 |
|
|
|
6454 <li> |
|
|
|
6455 <p>Structural phenomena</p> |
|
|
|
6456 |
|
|
|
6457 <ul> |
|
|
|
6458 <li> |
|
|
|
6459 <p><a class='existingWikiWord' href='/nlab/show/universality+class'>universality class</a></p> |
|
|
|
6460 </li> |
|
|
|
6461 |
|
|
|
6462 <li> |
|
|
|
6463 <p><a class='existingWikiWord' href='/nlab/show/quantum+anomaly'>quantum anomaly</a></p> |
|
|
|
6464 |
|
|
|
6465 <ul> |
|
|
|
6466 <li><a class='existingWikiWord' href='/nlab/show/Green-Schwarz+mechanism'>Green-Schwarz mechanism</a></li> |
|
|
|
6467 </ul> |
|
|
|
6468 </li> |
|
|
|
6469 |
|
|
|
6470 <li> |
|
|
|
6471 <p><a class='existingWikiWord' href='/nlab/show/instanton'>instanton</a></p> |
|
|
|
6472 </li> |
|
|
|
6473 |
|
|
|
6474 <li> |
|
|
|
6475 <p><a class='existingWikiWord' href='/nlab/show/spontaneously+broken+symmetry'>spontaneously broken symmetry</a></p> |
|
|
|
6476 </li> |
|
|
|
6477 |
|
|
|
6478 <li> |
|
|
|
6479 <p><a class='existingWikiWord' href='/nlab/show/Kaluza-Klein+mechanism'>Kaluza-Klein mechanism</a></p> |
|
|
|
6480 </li> |
|
|
|
6481 |
|
|
|
6482 <li> |
|
|
|
6483 <p><a class='existingWikiWord' href='/nlab/show/integrable+system'>integrable systems</a></p> |
|
|
|
6484 </li> |
|
|
|
6485 |
|
|
|
6486 <li> |
|
|
|
6487 <p><a class='existingWikiWord' href='/nlab/show/holonomic+quantum+field'>holonomic quantum fields</a></p> |
|
|
|
6488 </li> |
|
|
|
6489 </ul> |
|
|
|
6490 </li> |
|
|
|
6491 |
|
|
|
6492 <li> |
|
|
|
6493 <p>Types of quantum field thories</p> |
|
|
|
6494 |
|
|
|
6495 <ul> |
|
|
|
6496 <li> |
|
|
|
6497 <p><a class='existingWikiWord' href='/nlab/show/topological+quantum+field+theory'>TQFT</a></p> |
|
|
|
6498 |
|
|
|
6499 <ul> |
|
|
|
6500 <li> |
|
|
|
6501 <p><a class='existingWikiWord' href='/nlab/show/2d+TQFT'>2d TQFT</a></p> |
|
|
|
6502 </li> |
|
|
|
6503 |
|
|
|
6504 <li> |
|
|
|
6505 <p><a class='existingWikiWord' href='/nlab/show/Dijkgraaf-Witten+theory'>Dijkgraaf-Witten theory</a></p> |
|
|
|
6506 </li> |
|
|
|
6507 |
|
|
|
6508 <li> |
|
|
|
6509 <p><a class='existingWikiWord' href='/nlab/show/Chern-Simons+theory'>Chern-Simons theory</a></p> |
|
|
|
6510 </li> |
|
|
|
6511 </ul> |
|
|
|
6512 </li> |
|
|
|
6513 |
|
|
|
6514 <li> |
|
|
|
6515 <p><a class='existingWikiWord' href='/nlab/show/TCFT'>TCFT</a></p> |
|
|
|
6516 |
|
|
|
6517 <ul> |
|
|
|
6518 <li> |
|
|
|
6519 <p><a class='existingWikiWord' href='/nlab/show/A-model'>A-model</a>, <a class='existingWikiWord' href='/nlab/show/B-model'>B-model</a></p> |
|
|
|
6520 </li> |
|
|
|
6521 |
|
|
|
6522 <li> |
|
|
|
6523 <p><a class='existingWikiWord' href='/nlab/show/mirror+symmetry'>homological mirror symmetry</a></p> |
|
|
|
6524 </li> |
|
|
|
6525 </ul> |
|
|
|
6526 </li> |
|
|
|
6527 |
|
|
|
6528 <li> |
|
|
|
6529 <p><a class='existingWikiWord' href='/nlab/show/QFT+with+defects'>QFT with defects</a></p> |
|
|
|
6530 </li> |
|
|
|
6531 |
|
|
|
6532 <li> |
|
|
|
6533 <p><a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>conformal field theory</a></p> |
|
|
|
6534 </li> |
|
|
|
6535 |
|
|
|
6536 <li> |
|
|
|
6537 <p><a class='existingWikiWord' href='/nlab/show/%281%2C1%29-dimensional+Euclidean+field+theories+and+K-theory'>(1,1)-dimensional Euclidean field theories and K-theory</a></p> |
|
|
|
6538 </li> |
|
|
|
6539 |
|
|
|
6540 <li> |
|
|
|
6541 <p><a class='existingWikiWord' href='/nlab/show/%282%2C1%29-dimensional+Euclidean+field+theory'>(2,1)-dimensional Euclidean field theory and elliptic cohomology</a></p> |
|
|
|
6542 </li> |
|
|
|
6543 |
|
|
|
6544 <li> |
|
|
|
6545 <p><a class='existingWikiWord' href='/nlab/show/conformal+field+theory'>CFT</a></p> |
|
|
|
6546 |
|
|
|
6547 <ul> |
|
|
|
6548 <li> |
|
|
|
6549 <p><a class='existingWikiWord' href='/nlab/show/Wess-Zumino-Witten+model'>WZW model</a></p> |
|
|
|
6550 </li> |
|
|
|
6551 |
|
|
|
6552 <li> |
|
|
|
6553 <p><a class='existingWikiWord' href='/nlab/show/D%3D6+N%3D%282%2C0%29+SCFT'>6d (2,0)-supersymmetric QFT</a></p> |
|
|
|
6554 </li> |
|
|
|
6555 </ul> |
|
|
|
6556 </li> |
|
|
|
6557 |
|
|
|
6558 <li> |
|
|
|
6559 <p><a class='existingWikiWord' href='/nlab/show/gauge+theory'>gauge theory</a></p> |
|
|
|
6560 |
|
|
|
6561 <ul> |
|
|
|
6562 <li> |
|
|
|
6563 <p><a class='existingWikiWord' href='/nlab/show/field+strength'>field strength</a></p> |
|
|
|
6564 </li> |
|
|
|
6565 |
|
|
|
6566 <li> |
|
|
|
6567 <p><a class='existingWikiWord' href='/nlab/show/gauge+group'>gauge group</a>, <a class='existingWikiWord' href='/nlab/show/gauge+transformation'>gauge transformation</a>, <a class='existingWikiWord' href='/nlab/show/gauge+fixing'>gauge fixing</a></p> |
|
|
|
6568 </li> |
|
|
|
6569 |
|
|
|
6570 <li> |
|
|
|
6571 <p>examples</p> |
|
|
|
6572 |
|
|
|
6573 <ul> |
|
|
|
6574 <li><a class='existingWikiWord' href='/nlab/show/electromagnetic+field'>electromagnetic field</a>, <a class='existingWikiWord' href='/nlab/show/quantum+electrodynamics'>QED</a></li> |
|
|
|
6575 </ul> |
|
|
|
6576 </li> |
|
|
|
6577 |
|
|
|
6578 <li> |
|
|
|
6579 <p><a class='existingWikiWord' href='/nlab/show/electric+charge'>electric charge</a></p> |
|
|
|
6580 </li> |
|
|
|
6581 |
|
|
|
6582 <li> |
|
|
|
6583 <p><a class='existingWikiWord' href='/nlab/show/magnetic+charge'>magnetic charge</a></p> |
|
|
|
6584 |
|
|
|
6585 <ul> |
|
|
|
6586 <li><a class='existingWikiWord' href='/nlab/show/Yang-Mills+field'>Yang-Mills field</a>, <a class='existingWikiWord' href='/nlab/show/QCD'>QCD</a></li> |
|
|
|
6587 </ul> |
|
|
|
6588 </li> |
|
|
|
6589 |
|
|
|
6590 <li> |
|
|
|
6591 <p><a class='existingWikiWord' href='/nlab/show/Yang-Mills+theory'>Yang-Mills theory</a></p> |
|
|
|
6592 </li> |
|
|
|
6593 |
|
|
|
6594 <li> |
|
|
|
6595 <p><a class='existingWikiWord' href='/nlab/show/The+Dirac+Electron'>spinors in Yang-Mills theory</a></p> |
|
|
|
6596 </li> |
|
|
|
6597 |
|
|
|
6598 <li> |
|
|
|
6599 <p><a class='existingWikiWord' href='/nlab/show/topological+Yang-Mills+theory'>topological Yang-Mills theory</a></p> |
|
|
|
6600 |
|
|
|
6601 <ul> |
|
|
|
6602 <li><a class='existingWikiWord' href='/nlab/show/Kalb-Ramond+field'>Kalb-Ramond field</a></li> |
|
|
|
6603 |
|
|
|
6604 <li><a class='existingWikiWord' href='/nlab/show/supergravity+C-field'>supergravity C-field</a></li> |
|
|
|
6605 |
|
|
|
6606 <li><a class='existingWikiWord' href='/nlab/show/RR+field'>RR field</a></li> |
|
|
|
6607 |
|
|
|
6608 <li><a class='existingWikiWord' href='/nlab/show/first-order+formulation+of+gravity'>first-order formulation of gravity</a></li> |
|
|
|
6609 </ul> |
|
|
|
6610 </li> |
|
|
|
6611 |
|
|
|
6612 <li> |
|
|
|
6613 <p><a class='existingWikiWord' href='/nlab/show/general+covariance'>general covariance</a></p> |
|
|
|
6614 </li> |
|
|
|
6615 |
|
|
|
6616 <li> |
|
|
|
6617 <p><a class='existingWikiWord' href='/nlab/show/supergravity'>supergravity</a></p> |
|
|
|
6618 </li> |
|
|
|
6619 |
|
|
|
6620 <li> |
|
|
|
6621 <p><a class='existingWikiWord' href='/nlab/show/D%27Auria-Fre+formulation+of+supergravity'>D'Auria-Fre formulation of supergravity</a></p> |
|
|
|
6622 </li> |
|
|
|
6623 |
|
|
|
6624 <li> |
|
|
|
6625 <p><a class='existingWikiWord' href='/nlab/show/gravity+as+a+BF+theory'>gravity as a BF-theory</a></p> |
|
|
|
6626 </li> |
|
|
|
6627 </ul> |
|
|
|
6628 </li> |
|
|
|
6629 |
|
|
|
6630 <li> |
|
|
|
6631 <p><a class='existingWikiWord' href='/nlab/show/sigma-model'>sigma-model</a></p> |
|
|
|
6632 |
|
|
|
6633 <ul> |
|
|
|
6634 <li> |
|
|
|
6635 <p><a class='existingWikiWord' href='/nlab/show/particle'>particle</a>, <a class='existingWikiWord' href='/nlab/show/relativistic+particle'>relativistic particle</a>, <a class='existingWikiWord' href='/nlab/show/fundamental+particle'>fundamental particle</a>, <a class='existingWikiWord' href='/nlab/show/spinning+particle'>spinning particle</a>, <a class='existingWikiWord' href='/nlab/show/superparticle'>superparticle</a></p> |
|
|
|
6636 </li> |
|
|
|
6637 |
|
|
|
6638 <li> |
|
|
|
6639 <p><a class='existingWikiWord' href='/nlab/show/string'>string</a>, <a class='existingWikiWord' href='/nlab/show/spinning+string'>spinning string</a>, <a class='existingWikiWord' href='/nlab/show/superstring'>superstring</a></p> |
|
|
|
6640 </li> |
|
|
|
6641 |
|
|
|
6642 <li> |
|
|
|
6643 <p><a class='existingWikiWord' href='/nlab/show/membrane'>membrane</a></p> |
|
|
|
6644 </li> |
|
|
|
6645 |
|
|
|
6646 <li> |
|
|
|
6647 <p><a class='existingWikiWord' href='/nlab/show/AKSZ+sigma-model'>AKSZ theory</a></p> |
|
|
|
6648 </li> |
|
|
|
6649 </ul> |
|
|
|
6650 </li> |
|
|
|
6651 </ul> |
|
|
|
6652 </li> |
|
|
|
6653 </ul> |
|
|
|
6654 </li> |
|
|
|
6655 |
|
|
|
6656 <li> |
|
|
|
6657 <p><a class='existingWikiWord' href='/nlab/show/string+theory'>String Theory</a></p> |
|
|
|
6658 |
|
|
|
6659 <ul> |
|
|
|
6660 <li><a class='existingWikiWord' href='/nlab/show/string+theory+results+applied+elsewhere'>string theory results applied elsewhere</a></li> |
|
|
|
6661 </ul> |
|
|
|
6662 </li> |
|
|
|
6663 |
|
|
|
6664 <li> |
|
|
|
6665 <p><a class='existingWikiWord' href='/nlab/show/number+theory+and+physics'>number theory and physics</a></p> |
|
|
|
6666 |
|
|
|
6667 <ul> |
|
|
|
6668 <li><a class='existingWikiWord' href='/nlab/show/Riemann+hypothesis+and+physics'>Riemann hypothesis and physics</a></li> |
|
|
|
6669 </ul> |
|
|
|
6670 </li> |
|
|
|
6671 </ul> |
|
|
|
6672 <div> |
|
|
|
6673 <p> |
|
|
|
6674 <a href='/nlab/edit/physicscontents'>Edit this sidebar</a> |
|
|
|
6675 </p> |
|
|
|
6676 </div></div> |
|
|
|
6677 </div> |
|
|
|
6678 </div> |
|
|
|
6679 |
|
|
|
6680 <h1 id='contents'>Contents</h1> |
|
|
|
6681 <div class='maruku_toc'><ul><li><a href='#idea'>Idea</a></li><li><a href='#references'>References</a></li></ul></div> |
|
|
|
6682 <h2 id='idea'>Idea</h2> |
|
|
|
6683 |
|
|
|
6684 <p>Our <a class='existingWikiWord' href='/nlab/show/galaxy'>galaxy</a>.</p> |
|
|
|
6685 |
|
|
|
6686 <h2 id='references'>References</h2> |
|
|
|
6687 |
|
|
|
6688 <ul> |
|
|
|
6689 <li>Susan Gardner, Samuel D. McDermott, Brian Yanny, <em>The Milky Way, Coming into Focus: Precision Astrometry Probes its Evolution, and its Dark Matter</em> (<a href='https://arxiv.org/abs/2106.13284'>arXiv:2106.13284</a>)</li> |
|
|
|
6690 </ul> |
|
|
|
6691 |
|
|
|
6692 <p>See also</p> |
|
|
|
6693 |
|
|
|
6694 <ul> |
|
|
|
6695 <li>Wikipedia, <em><a href='https://en.wikipedia.org/wiki/Milky_Way'>Milky Way</a></em></li> |
|
|
|
6696 </ul> </div> |
|
|
|
6697 </content> |
|
|
|
6698 </entry> |
|
|
|
6699 </feed> |
|